[1] M. V. Aarset, How to identify a bathtub hazard rate, IEEE
Transactions on Reliability 36(1) (1987), 106-108.
[2] A. Al-Babtain, A. A. Fattah, A. N. Ahmed and F. Merovci, The
Kumaraswamy-transmuted exponentiated modified Weibull distribution,
Accepted for Communications in Statistics-Theory and Methods
(2015).
[3] M. S. Ammar and Z. Mazen, Modified Weibull distribution, Applied
Sciences 11 (2009), 123-136.
[4] G. R. Aryal and C. P. Tsokos, Transmuted Weibull distribution: A
generalization of the Weibull probability distribution, European
Journal of Pure and Applied Mathematics 4(2) (2011), 89-102.
[5] S. Ashour and M. Eltehiwy, Transmuted exponentiated modified
Weibull distribution, International Journal of Basic and Applied
Sciences 2(3) (2013), 258-269.
[6] R. E. Barlow and F. Proschan, Statistical Theory or Reliability
and Life Testing: Probability Models, Tobe with, 1981.
[7] H. W. Block and T. H. Savits, Burn-in, Statistical Science 12(1)
(1997), 1-19.
[8] D. S. Chang, Optimal burn-in decision for products with a unimodal
failure rate function, European Journal of Operational Research 126(3)
(2000), 534-540.
[9] R. C. H. Cheng and N. A. K. Amin, Estimating parameters in
continuous univariate distributions with a shifted origin, Journal of
the Royal Statistical Society, Series B (Methodological) (1983),
394-403.
[10] G. M. Cordeiro and M. de Castro, A new family of generalized
distributions, Journal of Statistical Computation and Simulation 81(7)
(2011), 883-898.
[11] G. M. Cordeiro, E. M. Ortega and S. Nadarajah, The Kumaraswamy
Weibull distribution with application to failure data, Journal of the
Franklin Institute 347(8) (2010), 1399-1429.
[12] G. M. Cordeiro, E. M. Ortega and G. O. Silva, The Kumaraswamy
modified Weibull distribution: Theory and applications, Journal of
Statistical Computation and Simulation 84(7) (2014), 1387-1411.
[13] G. M. Cordeiro, R. R. Pescim and E. M. Ortega, The Kumaraswamy
generalized half-normal distribution for skewed positive data, J. Data
Sci. 10 (2012), 195-224.
[14] I. Elbatal, Exponentiated modified Weibull distribution, Economic
Quality Control 26(2) (2011), 189-200.
[15] I. Elbatal, Kumaraswamy generalized linear failure rate
distribution, Indian Journal of Computational & Applied Mathematics
1(1) (2013), 61-78.
[16] A. E. Gomes, C. Q. de-Silva, G. M. Cordeiro and E. M. Ortega, A
new lifetime model: The Kumaraswamy generalized Rayleigh distribution,
Journal of Statistical Computation and Simulation 84(2) (2014),
290-309.
[17] M. Greenwich, A unimodal hazard rate function and its failure
distribution, Statistical Papers 33(1) (1992), 187-202.
[18] R. C. Gupta, P. L. Gupta and R. D. Gupta, Modeling failure time
data by Lehman alternatives, Communications in Statistics-Theory and
Methods 27(4) (1998), 887-904.
[19] R. D. Gupta and D. Kundu, Generalized exponential distributions,
Australian & New Zealand Journal of Statistics 41(2) (1999),
173-188.
[20] R. D. Gupta and D. Kundu, Exponentiated exponential family: An
alternative to gamma and Weibull distributions, Biometrical Journal
43(1) (2001), 117-130.
[21] R. Jiang, P. Ji and X. Xiao, Ageing property of unimodal failure
rate models, Reliability Engineering & System Safety 79(1) (2003),
113-116.
[22] M. C. Jones, Kumaraswamy’s distribution: A beta-type
distribution with some tractability advantages, Statistical
Methodology 6(1) (2009), 70-81.
[23] W. D. Kelton and A. M. Law, Simulation Modeling and Analysis,
Boston, MA: McGraw Hill, 2000.
[24] M. S. Khan and R. King, Transmuted modified Weibull distribution:
A generalization of the modified Weibull probability distribution,
European Journal of Pure and Applied Mathematics 6(1) (2013),
66-88.
[25] P. Kumaraswamy, A generalized probability density function for
double-bounded random processes, Journal of Hydrology 46(1) (1980),
79-88.
[26] D. Kundu and M. Z. Raqab, Generalized Rayleigh distribution:
Different methods of estimations, Computational Statistics & Data
Analysis 49(1) (2005), 187-200.
[27] C. D. Lai, M. Xie and D. N. P. Murthy, A modified Weibull
distribution, IEEE Transactions on Reliability 52(1) (2003), 33-37.
[28] D. V. Lindley, Fiducial distributions and Bayes’ theorem,
J. Royal Stat. Soc. Series B 20 (1958), 102-107.
[29] M. M. Mansour, M. A. Enayat, S. M. Hamed and M. S. Mohamed, A new
transmuted additive Weibull distribution based on a new method for
adding a parameter to a family of distributions, Accepted for JAMS
(2015).
[30] F. Merovci, Transmuted exponentiated exponential distribution,
Mathematical Sciences and Applications E-Notes 1(2) (2013),
112-122.
[31] F. Merovci, Transmuted Rayleigh distribution, Austrian Journal of
Statistics 42(1) (2013), 21-31.
[32] F. Merovci, Transmuted generalized Rayleigh distribution, Journal
of Statistics Applications and Probability 3(1) (2014), 9-20.
[33] G. S. Mudholkar and D. K. Srivastava, The exponentiated Weibull
family for analyzing bathtub failure-rate data, IEEE Transactions on
Reliability 42(2) (1993), 299-302.
[34] G. S. Mudholkar, D. K. Srivastava and M. Freimer, The
exponentiated Weibull family: A reanalysis of the bus-motor-failure
data, Technometrics 37(4) (1995), 436-445.
[35] D. P. Murthy, M. Xie and R. Jiang, Weibull Models, Vol. 505, John
Wiley & Sons, 2004.
[36] H. Pham and C. D. Lai, On recent generalizations of the Weibull
distribution, IEEE Transactions on Reliability 56(3) (2007),
454-458.
[37] A. M. Sarhan and D. Kundu, Generalized linear failure rate
distribution, Communications in Statistics-Theory and Methods 38(5)
(2009), 642-660.
[38] A. M. Sarhan and M. Zaindin, Modified Weibull distribution,
Applied Sciences 11(1) (2009), 123-136.
[39] E. W. Stacy, A generalization of the gamma distribution, The
Annals of Mathematical Statistics (1962), 1187-1192.
[40] R. C. Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2012. ISBN 3-900051-07-0.
[41] W. Weibull, A statistical theory of the strength of materials,
IVA Handlingar (Royal Swedish Academy of Engineering Sciences,
Proceedings) nr, 151 (1939).
[42] M. Xie and C. D. Lai, Stochastic Ageing and Dependence for
Reliability, Springer, New York, 2006.
[43] M. Zaindin and A. M. Sarhan, Parameters estimation of the
modified Weibull distribution, Applied Mathematical Sciences 3(11)
(2009), 541-550.
[44] T. Zhang, M. Xie, L. C. Tang and S. H. Ng, Reliability and
modeling of systems integrated with firmware and hardware,
International Journal of Reliability, Quality and Safety Engineering
12(03) (2005), 227-239.