References

A NEW KUMARASWAMY TRANSMUTED MODIFIED WEIBULL DISTRIBUTION: WITH APPLICATION


[1] M. V. Aarset, How to identify a bathtub hazard rate, IEEE Transactions on Reliability 36(1) (1987), 106-108.

[2] A. Al-Babtain, A. A. Fattah, A. N. Ahmed and F. Merovci, The Kumaraswamy-transmuted exponentiated modified Weibull distribution, Accepted for Communications in Statistics-Theory and Methods (2015).

[3] M. S. Ammar and Z. Mazen, Modified Weibull distribution, Applied Sciences 11 (2009), 123-136.

[4] G. R. Aryal and C. P. Tsokos, Transmuted Weibull distribution: A generalization of the Weibull probability distribution, European Journal of Pure and Applied Mathematics 4(2) (2011), 89-102.

[5] S. Ashour and M. Eltehiwy, Transmuted exponentiated modified Weibull distribution, International Journal of Basic and Applied Sciences 2(3) (2013), 258-269.

[6] R. E. Barlow and F. Proschan, Statistical Theory or Reliability and Life Testing: Probability Models, Tobe with, 1981.

[7] H. W. Block and T. H. Savits, Burn-in, Statistical Science 12(1) (1997), 1-19.

[8] D. S. Chang, Optimal burn-in decision for products with a unimodal failure rate function, European Journal of Operational Research 126(3) (2000), 534-540.

[9] R. C. H. Cheng and N. A. K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, Journal of the Royal Statistical Society, Series B (Methodological) (1983), 394-403.

[10] G. M. Cordeiro and M. de Castro, A new family of generalized distributions, Journal of Statistical Computation and Simulation 81(7) (2011), 883-898.

[11] G. M. Cordeiro, E. M. Ortega and S. Nadarajah, The Kumaraswamy Weibull distribution with application to failure data, Journal of the Franklin Institute 347(8) (2010), 1399-1429.

[12] G. M. Cordeiro, E. M. Ortega and G. O. Silva, The Kumaraswamy modified Weibull distribution: Theory and applications, Journal of Statistical Computation and Simulation 84(7) (2014), 1387-1411.

[13] G. M. Cordeiro, R. R. Pescim and E. M. Ortega, The Kumaraswamy generalized half-normal distribution for skewed positive data, J. Data Sci. 10 (2012), 195-224.

[14] I. Elbatal, Exponentiated modified Weibull distribution, Economic Quality Control 26(2) (2011), 189-200.

[15] I. Elbatal, Kumaraswamy generalized linear failure rate distribution, Indian Journal of Computational & Applied Mathematics 1(1) (2013), 61-78.

[16] A. E. Gomes, C. Q. de-Silva, G. M. Cordeiro and E. M. Ortega, A new lifetime model: The Kumaraswamy generalized Rayleigh distribution, Journal of Statistical Computation and Simulation 84(2) (2014), 290-309.

[17] M. Greenwich, A unimodal hazard rate function and its failure distribution, Statistical Papers 33(1) (1992), 187-202.

[18] R. C. Gupta, P. L. Gupta and R. D. Gupta, Modeling failure time data by Lehman alternatives, Communications in Statistics-Theory and Methods 27(4) (1998), 887-904.

[19] R. D. Gupta and D. Kundu, Generalized exponential distributions, Australian & New Zealand Journal of Statistics 41(2) (1999), 173-188.

[20] R. D. Gupta and D. Kundu, Exponentiated exponential family: An alternative to gamma and Weibull distributions, Biometrical Journal 43(1) (2001), 117-130.

[21] R. Jiang, P. Ji and X. Xiao, Ageing property of unimodal failure rate models, Reliability Engineering & System Safety 79(1) (2003), 113-116.

[22] M. C. Jones, Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages, Statistical Methodology 6(1) (2009), 70-81.

[23] W. D. Kelton and A. M. Law, Simulation Modeling and Analysis, Boston, MA: McGraw Hill, 2000.

[24] M. S. Khan and R. King, Transmuted modified Weibull distribution: A generalization of the modified Weibull probability distribution, European Journal of Pure and Applied Mathematics 6(1) (2013), 66-88.

[25] P. Kumaraswamy, A generalized probability density function for double-bounded random processes, Journal of Hydrology 46(1) (1980), 79-88.

[26] D. Kundu and M. Z. Raqab, Generalized Rayleigh distribution: Different methods of estimations, Computational Statistics & Data Analysis 49(1) (2005), 187-200.

[27] C. D. Lai, M. Xie and D. N. P. Murthy, A modified Weibull distribution, IEEE Transactions on Reliability 52(1) (2003), 33-37.

[28] D. V. Lindley, Fiducial distributions and Bayes’ theorem, J. Royal Stat. Soc. Series B 20 (1958), 102-107.

[29] M. M. Mansour, M. A. Enayat, S. M. Hamed and M. S. Mohamed, A new transmuted additive Weibull distribution based on a new method for adding a parameter to a family of distributions, Accepted for JAMS (2015).

[30] F. Merovci, Transmuted exponentiated exponential distribution, Mathematical Sciences and Applications E-Notes 1(2) (2013), 112-122.

[31] F. Merovci, Transmuted Rayleigh distribution, Austrian Journal of Statistics 42(1) (2013), 21-31.

[32] F. Merovci, Transmuted generalized Rayleigh distribution, Journal of Statistics Applications and Probability 3(1) (2014), 9-20.

[33] G. S. Mudholkar and D. K. Srivastava, The exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Transactions on Reliability 42(2) (1993), 299-302.

[34] G. S. Mudholkar, D. K. Srivastava and M. Freimer, The exponentiated Weibull family: A reanalysis of the bus-motor-failure data, Technometrics 37(4) (1995), 436-445.

[35] D. P. Murthy, M. Xie and R. Jiang, Weibull Models, Vol. 505, John Wiley & Sons, 2004.

[36] H. Pham and C. D. Lai, On recent generalizations of the Weibull distribution, IEEE Transactions on Reliability 56(3) (2007), 454-458.

[37] A. M. Sarhan and D. Kundu, Generalized linear failure rate distribution, Communications in Statistics-Theory and Methods 38(5) (2009), 642-660.

[38] A. M. Sarhan and M. Zaindin, Modified Weibull distribution, Applied Sciences 11(1) (2009), 123-136.

[39] E. W. Stacy, A generalization of the gamma distribution, The Annals of Mathematical Statistics (1962), 1187-1192.

[40] R. C. Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0.

[41] W. Weibull, A statistical theory of the strength of materials, IVA Handlingar (Royal Swedish Academy of Engineering Sciences, Proceedings) nr, 151 (1939).

[42] M. Xie and C. D. Lai, Stochastic Ageing and Dependence for Reliability, Springer, New York, 2006.

[43] M. Zaindin and A. M. Sarhan, Parameters estimation of the modified Weibull distribution, Applied Mathematical Sciences 3(11) (2009), 541-550.

[44] T. Zhang, M. Xie, L. C. Tang and S. H. Ng, Reliability and modeling of systems integrated with firmware and hardware, International Journal of Reliability, Quality and Safety Engineering 12(03) (2005), 227-239.