References

A NEW GENERALIZATION OF POWER LINDLEY DISTRIBUTION: WITH APPLICATIONS TO LIFETIME DATA


[1] J. C. Ahuja and S. W. Nash, The generalized Gompertz-Verhulst family of distributions, Sankhya 29 (1967), 141-161.

[2] G. R. Aryal and C. P. Tsokos, Transmuted Weibull distribution: A generalization of the Weibull probability distribution, European Journal of Pure and Applied Mathematics 4(2) (2011), 89-102.

[3] A. Asgharzadeh, S. H. Bakouch, S. Nadarajah and L. Esmaeili, A new family of compound lifetime distributions, Kybernetika 50(1) (2014), 142-169.

[4] H. S. Bakouch, B. M. Al-Zahrani, A. A. Al-Shomrani, V. A. A. Marchi and F. Louzada, An extended Lindley distribution, J. Korean Stat. Soc. 41(1) (2012), 75-85.

[5] R. E. Barlow and F. Proschan, Statistical Theory or Reliability and Life Testing: Probability Models, Tobe with, (1981).

[6] H. W. Block and T. H. Savits, Burn-in, Statistical Science 12(1) (1997), 1-19.

[7] D. S. Chang, Optimal burn-in decision for products with a unimodal failure rate function, European Journal of Operational Research 126(3) (2000), 534-540.

[8] R. C. H. Cheng and N. A. K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, Journal of the Royal Statistical Society, Series B (Methodological) (1983), 394-403.

[9] I. Elbatal, Exponentiated modified Weibull distribution, Economic Quality Control 26(2) (2011), 189-200.

[10] M. E. Ghitany, D. K. Al-Mutairi, N. Balakrishnan and L. J. Al-Enezi, Power Lindley distribution and associated inference, Comput. Stat. Data Anal. 64 (2013), 20-33.

[11] M. E. Ghitany, B. Atieh and S. Nadarajah, Lindley distribution and its application, Math. Comput. Simulat. 78 (2008), 493-506.

[12] M. E. Ghitany, F. Al-Qallaf, D. K. Al-Mutairi and H. A. Hussain, A two parameter weighted Lindley distribution and its applications to survival data, Math. Comput. Simulat. 81(6) (2011), 1190-1201.

[13] M. Greenwich, A unimodal hazard rate function and its failure distribution, Statistical Papers 33(1) (1992), 187-202.

[14] P. L. Gupta and R. C. Gupta, On the moments of residual life in reliability and some characterization results, Communications in Statistics-Theory and Methods 12 (1983) 449-461.

[15] R. D. Gupta and D. Kundu, Generalized exponential distributions, Australian & New Zealand Journal of Statistics 41(2) (1999), 173-188.

[16] R. Jiang, P. Ji and X. Xiao, Ageing property of unimodal failure rate models, Reliability Engineering & System Safety 79(1) (2003), 113-116.

[17] M. S. Khan and R. King, Transmuted modified Weibull distribution: A generalization of the modified Weibull probability distribution, European Journal of Pure and Applied Mathematics 6(1) (2013), 66-88.

[18] D. V. Lindley, Fiducial distributions and Bayes theorem, Journal of the Royal Statistical Society 20(1) (1958), 102-107.

[19] M. M. Mansour, M. A. Enayat, S. M. Hamed and M. S. Mohamed, A new transmuted additive Weibull distribution based on a new method for adding a parameter to a family of distributions, Accepted for JAMS.

[20] F. Merovci, Transmuted Lindley distribution, Int. J. Open Problems Compt. Math. 6(2) (2013), 63-72.

[21] F. Merovci, Transmuted generalized Rayleigh distribution, Journal of Statistics Applications and Probability 3(1) (2014), 9-20.

[22] F. Merovci and I. Elbatal, Transmuted Lindely-Geometric Distribution and its Application, J. Stat. Appl. Pro. 3(1) (2014), 77-91.

[23] G. S. Mudholkar and D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Transactions on Reliability 42(2) (1993), 299-302.

[24] G. S. Mudholkar, D. K. Srivastava and M. Freimer, The exponentiated Weibull family: A reanalysis of the bus-motor-failure data, Technometrics 37(4) (1995), 436-445.

[25] S. Nadarajah, H. S. Bakouch and R. A. Tahmasbi, Generalized Lindley distribution, Sankhya B 73 (2011), 331-359.

[26] B. Oluyede and T. Yang, A new class of generalized Lindley distributions with applications, J. Stat. Comput. Simulat. (2014).

http://dx.doi.org/10.1080/00949655.2014.917308

[27] A. M. Sarhan and M. Zaindin, Modified Weibull distribution, Applied Sciences 11(1) (2009), 123-136.

[28] W. T. Shaw and I. R. Buckley, The alchemy of probability distributions: Beyond Gram-Charlier expansions and a skew-kurtotic-normal distribution from a rank transmutation map, (2009).

arXivpreprint arXiv:0901.0434

[29] R. C. Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, (2012).

[30] M. Xie and C. D. Lai, Stochastic Ageing and Dependence for Reliability, Springer, New York, 2006.

[31] T. Zhang, M. Xie, L. C. Tang and S. H. Ng, Reliability and modeling of systems integrated with firmware and hardware, International Journal of Reliability, Quality and Safety Engineering 12(03) (2005), 227-239.