[1] J. M. Bernardo and A. F. M. Smith, Bayesian Theory, John Wiley and
Sons, 1974.
[2] T. Bollerslev, Generalized autoregressive conditional
heteroskedasticity, Journal of Econometrics 73 (1986), 151-184.
[3] R. F. Engle, Autoregressive conditional heteroskedasticity with
estimates of the variance of U.K. inflation, Econometrica 50 (1982),
987-1007.
[4] R. F. Engle, Estimates of the variance of U.S. inflation based on
the ARCH model, Journal of Money, Credit and Banking 15 (1983),
286-301.
[5] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images, IEEE Transactions on Pattern
Analysis and Machine Intelligence 6 (1984), 721-741.
[6] L. R. Glosten, R. Jagannathan and D. E. Runkle, On the relation
between the expected value and the volatility of the nominal excess
return on stocks, The Journal of Finance 48 (1993), 1779-1801.
[7] W. K. Hastings, Monte Carlo sampling methods using Markov chains
and their applications, Biometrika 57 (1970), 97-109.
[8] P. R. Hansen and A. Lunde, A forecast comparison of volatility
models: Does anything beat a GARCH (1,1) model ?, Journal of Applied
Econometrics 20 (2004), 873-889.
[9] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller
and E. Teller, Equation of state calculations by fast computing
machines, Journal of Chemical Physics 21 (1953), 1087-1092.
[10] T. Nakatsuma, Bayesian analysis of ARMA-GARCH models: A Markov
chain sampling approach, Journal of Econometrics 95 (2000), 57-69.
[11] D. B. Nelson, Conditional heteroskedasticity in asset returns: A
new approach, Econometrica 59 (1991), 347-370.