References

A BAYESIAN APPROACH TO VOLATILITY MODELS


[1] J. M. Bernardo and A. F. M. Smith, Bayesian Theory, John Wiley and Sons, 1974.

[2] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 73 (1986), 151-184.

[3] R. F. Engle, Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation, Econometrica 50 (1982), 987-1007.

[4] R. F. Engle, Estimates of the variance of U.S. inflation based on the ARCH model, Journal of Money, Credit and Banking 15 (1983), 286-301.

[5] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence 6 (1984), 721-741.

[6] L. R. Glosten, R. Jagannathan and D. E. Runkle, On the relation between the expected value and the volatility of the nominal excess return on stocks, The Journal of Finance 48 (1993), 1779-1801.

[7] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1970), 97-109.

[8] P. R. Hansen and A. Lunde, A forecast comparison of volatility models: Does anything beat a GARCH (1,1) model ?, Journal of Applied Econometrics 20 (2004), 873-889.

[9] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines, Journal of Chemical Physics 21 (1953), 1087-1092.

[10] T. Nakatsuma, Bayesian analysis of ARMA-GARCH models: A Markov chain sampling approach, Journal of Econometrics 95 (2000), 57-69.

[11] D. B. Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econometrica 59 (1991), 347-370.