[1] K. I. Ahn, Use of coefficient of variation for uncertainty
analysis in fault tree analysis, Reliability Engineering & System
Safety 47(3) (1995), 229-230.
[2] D. G. Altman and B. G. Martin, Interaction revisited: The
difference between two estimates, British Medical Journal (2003),
326-219.
[3] J. D. Curto and J. C. Pinto, The coefficient of variation
asymptotic distribution in the case of non iid random variables,
Journal of Applied Statistics 36(1) (2009), 21-32.
[4] C. J. Feltz and G. E. Miller, An asymptotic test for the equality
of coefficients of variation from k populations, Statistics in
Medicine 15 (1996), 647-658.
[5] W. K. Fung and T. S. Tsang, A simulation study comparing tests for
the equality of coefficients of variations, Statistics in Medicine 17
(1997), 2003-2014.
[6] J. H. Gong and Y. Li, Relationship between the estimated Weibull
modulus and the coefficient of variation of the measured strength for
ceramics, Journal of the American Ceramic Society 82(2) (1999),
449-452.
[7] A. J. Hamer, J. R. Strachan, M. M. Black, C. Ibbotson and R. A.
Elson, A new method of comparative bone strength measurement, Journal
of Medical Engineering and Technology 19(1) (1995), 1-5.
[8] E. G. Miller and M. J. Karson, Testing the equality of two
coefficients of variation, American Statistical Association:
Proceedings of the Business and Economics Section, Part I, (1977),
278-283.
[9] P. V. S. V. Neti and R. W. Howell, Lognormal distribution of
cellular uptake of radioactivity: Statistical analysis of -particle
track autoradiography, Journal of Nuclear Medicine 49(6) (2008),
1009-1016.
[10] U. Olsson, Confidence intervals for the mean of a lognormal
distribution, Journal of Statistics Education 13(1) (2005).
www.amstat.org/publications/jse/v13n1/olsson.html
[11] W. K. Pang, P. K. Leung, W. K. Huang and W. Liu, On interval
estimation of the coefficient of variation for the three-parameter
Weibull, lognormal and gamma distribution: A simulation-based
approach, European Journal of Operational Research 164 (2005),
367-377.
[12] J. A. Thie, K. F. Hubner and G. T. Smith, The diagnostic utility
of the lognormal behaviour of PET standardized uptake values in
tumors, Journal of Nuclear Medicine 41 (2000), 1664-1672.
[13] L. Tian, Inferences on the common coefficient of variation,
Statistics in Medicine 24 (2005), 2213-2220.
[14] K. W. Tsui and S. Weerahandi, Generalized p-values in
significance testing of hypotheses in the presence of nuisance
parameters, Journal of American Statistical Association 84 (1989),
602-607.
[15] S. Weerahandi, Generalized confidence intervals, Journal of
American Statistical Association 88 (1993), 899-905.
[16] S. Weerahandi, Exact Statistical Methods for Data Analysis,
Springer: New York, 1995.
[17] X. H. Zhou and S. Gao, Confidence intervals for the log-normal
mean, Statistics in Medicine 16 (1997), 783-790.