References

LIFE LENGTH OF COMPONENTS ESTIMATES WITH BETA-WEIGHTED WEIBULL DISTRIBUTION


[1] A. Akinsete, F. Famoye and C. Lee, The beta Pareto distribution, Statistics 42(6) (2008), 547-563.
http//dx.doi.org/10.1080/0233180801983876

[2] A. Akinsete and C. Lowe, The beta-Rayleigh distribution in reliability measure, Section on physical and engineering sciences, Proceedings of American Statistical Association (1) (2009), 3103-3107.

[3] A. Azzalini, A class of distributions which include the normal ones, Scand. J. Stat. 12 (1985), 171-178.

[4] G. M. Cordeiro, A. B. Simas and D. B. Stosic, Explicit expressions for moments of the beta Weibull distribution, (2008), 1-17.
arXiv:0809.1860vl[stat.ME]
http:/functions.wolfran.com/GammabetaErf/BetaRegularized/03/01/pp1-14< br />

[5] G. M. Cordeiro, C. Alexandra, Edwin M. M. Ortega and J. M. Sarabia, Generalized beta generated distributions, ICMA Centre, Discussion Papers in Finance DP 2011-05 (2011), 1-29.

[6] N. C. Eugene and F. Famoye, Beta-normal distribution and its applications, Communications in Statistics – Theory and Methods 31 (2002), 497-512.

[7] F. Famoye, C. Lee and O. Olugbenga, The beta-weibull distribution, Journal of Statistical Theory and Applications 4(2) (2005), 121-138.

[8] J. M. Fischer and D. Vaughan, The beta-hyperbolic secant distribution, Austrian Journal of Statistics 39(3) (2010), 245-258.

[9] R. D. Gupta and D. Kundu, A new class of weighted exponential distributions, Statistics 43(6) (2009), 621-634.

[10] M. C. Jones, Families of distributions arising from distributions of order statistics test 13 (2004), 1-43.

[11] Artur J. Lemonte, The beta log-logistic distribution, BJPS Accepted Manuscript (2004), 1-21.

[12] Luz M. Zea, Rodrigo B. Silva, Marcelo Bourguignon, Andrea M. Santos and Gauss M. Corderio, The beta exponentiated Pareto distribution with application to bladder cancer susceptibility, International Journal of Statistics and Probability 1(2) (2012), 8-19.

[13] M. Ramadan Mahdy, A class of weighted Weibull distributions and its properties, Studies in Mathematics Sciences (Canada) VI(1) (2013), 35-45. DOI.10.3968/j.sms.1923845220130601.1065.

[14] A. L. Morais, G. M. Cordeiro and Audrey H. M. A. Cyneiro, The beta generalized logistic distribution, Submitted to the Brazilian Journal of Probability and Statistics (BJPS Accepted Manuscript) (2011), 1-13.

[15] S. Nadarajah and S. Kotz, The beta Gumbel distribution, Mathematical Problems in Engineering 4 (2004), 323-332.

[16] S. Nadarajah and S. Kotz, The beta exponential distribution, Reliability Engineering and System Safety 91 (2006), 689-697.

[17] N. I. Badmus, T. A. Bamiduro and S. G. Ogunobi, Lehmann type II weighted Weibull distribution, International Journal of Physical Sciences 9(4)(2014),71-78. DOI:10.5897/IJPS2013.4.

[18] G. P. Patil and C. R. Rao, Weighted distribution a survey of their application;In P. R. Krishnaiah (Ed), Applications of Statistics (North Holland Publishing Company) (1977), 383-405.

[19] S. Shahbaz M. Q. Shahbaz and N. Z. But, A class of weighted Weibull distribution,Pakistan J. Statistics Operation Res. VI(1) (2010), 53-59.

[20] O. I. Shittu and A. K. Adepoju, On the beta-Nakagami distribution, Progress in Applied Mathematics 5(1) (2013), 49-58.

[21] J. M. R. Hosking, L-Moments analysis and estimation of distributions using linear combinations of order statistics, Journal of the Royal Statistical Society B 52 (1990), 105-124.