References

SOME PROPERTIES OF THE STEADY STATE CHARACTERISTICS OF DISCRETE TIME QUEUEING MODELS


[1] J. Hunter, Mathematical Techniques of Applied Probability, Volume 2, Academic Press, New York, 1983.

[2] H. Takagi, Queueing Analysis: Discrete-Time Systems, Volume 3, Amsterdam, North Holland, 1993(a).

[3] M. Manoharan, M. Alamatsaz and D. N. Shanbhag, Departure and related characteristic in queueing models, Hand Book of Statistics, C. R. Rao and D. N. Shanbhag Eds., Elsewier Science B V, 21 (2003), 557-572.

[4] J. F. C. Kingman, The heavy traffic approximation in the theory of queues, Proceedings Symposium Congestion Theory, Univ. North Carolina Press, Chapel Hill, (1965), 137-169.

[5] P. J. Burke, The output process of a stationary M/M/s queueing system, Ann. Math. Stat. 39 (1968), 1144-1152.

[6] N. M. Mirasol, The output of an M/G/1 queueing system is Poisson, Proc. Camp. Phil. Soc. 72 (1963), 137-169.

[7] D. N. Shanbhag and D. G. Tambouratzis, Erlang’s formula and some results on the departure process for a loss system, J. Appl. Prob. 10 (1973), 233-240.

[8] D. N. Shanbhag, Characterization for the queueing system M/G/1, Proc. Camp. Phil. Soc. 74 (1973), 141-143.

[9] Joby K. Jose and M. Manoharan, On infinite divisibility of steady state distributions in some queueing models, Jour. of Ind. Statist. Assoc. 48(2) (2010), 231-241.

[10] F. W. Steutel and K. Van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Marcel Dekker, New York, 1983.