[1] J. Hunter, Mathematical Techniques of Applied Probability, Volume
2, Academic Press, New York, 1983.
[2] H. Takagi, Queueing Analysis: Discrete-Time Systems, Volume 3,
Amsterdam, North Holland, 1993(a).
[3] M. Manoharan, M. Alamatsaz and D. N. Shanbhag, Departure and
related characteristic in queueing models, Hand Book of Statistics, C.
R. Rao and D. N. Shanbhag Eds., Elsewier Science B V, 21 (2003),
557-572.
[4] J. F. C. Kingman, The heavy traffic approximation in the theory of
queues, Proceedings Symposium Congestion Theory, Univ. North Carolina
Press, Chapel Hill, (1965), 137-169.
[5] P. J. Burke, The output process of a stationary M/M/s queueing
system, Ann. Math. Stat. 39 (1968), 1144-1152.
[6] N. M. Mirasol, The output of an M/G/1 queueing system is Poisson,
Proc. Camp. Phil. Soc. 72 (1963), 137-169.
[7] D. N. Shanbhag and D. G. Tambouratzis, Erlang’s formula and
some results on the departure process for a loss system, J. Appl.
Prob. 10 (1973), 233-240.
[8] D. N. Shanbhag, Characterization for the queueing system M/G/1,
Proc. Camp. Phil. Soc. 74 (1973), 141-143.
[9] Joby K. Jose and M. Manoharan, On infinite divisibility of steady
state distributions in some queueing models, Jour. of Ind. Statist.
Assoc. 48(2) (2010), 231-241.
[10] F. W. Steutel and K. Van Harn, Infinite Divisibility of
Probability Distributions on the Real Line, Marcel Dekker, New York,
1983.