References

CONVOLUTION REPRESENTATION IN PRACTICE


[1] A. Araujo and E. Giné, The Central Limit Theorems for Real and Banach Valued Random Variables, Wiley, New York, 1980.

[2] J. M. Begun, W. J. Hall, W. Huang and J. A. Wellner, Information and asymptotic efficiency in parametric-nonparametric models, Annals of Statistics 11 (1983), 432-452.

[3] R. Beran, The role of Hájek’s convolution theorem in statistical theory, Kybernetika 31 (1995), 221-237.

[4] R. Berk, Limiting behaviour of posterior distributions when the model is incorrect, Annals of Mathematical Statistics 37 (1966), 51-58.

[5] P. J. Bickel, C. A. Klaassen, Y. Ritov and J. A. Wellner, Efficient and Adaptive Estimation for Semiparametric Models, Johns Hopkins University Press, Baltimore, Maryland, 1993.

[6] L. Birgé, Approximation dans les espaces métriques et théorie de l’estimation, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 65 (1983), 181-237.

[7] W. Droste and W. Wefelmeyer, On Hájek’s convolution theorem, Statistical Decisions 2 (1984), 131-144.

[8] J. Hájek, A characterization of limiting distributions of regular estimates, Z. Wahrsch. und Verw. Gebiete 14 (1970), 323-330.

[9] J. M. Hammersley, On estimating restricted parameters, Journal of the Royal Statistical Society, Series B 12 (1950), 192-240.

[10] P. J. Huber, The behaviour of maximum likelihood estimates under non-standard conditions, Proc. Fifth Berkeley Symp. Math. Statist. Probab. 1 (1967), 221-233.

[11] I. A. Ibragimov and R. Z. Has’minskii, Statistical Estimation Asymptotic Theory, Springer-Verlag, New York, 1981.

[12] N. Inagaki, On the limiting distribution of a sequence of estimators with uniformity property, Annals of the Institute of Statistical Mathematics 22 (1970), 1-13.

[13] A. Janssen and V. Ostrovski, The convolution theorem of Hájek and LeCam- revisited, Statistics and Decision 1 (2005), submitted.

[14] P. Jeganathan, On the asymptotic theory of estimation when the limit of the log-likelihood ratio is mixed normal, Sankhá 44 (1982), 173-212.

[15] L. LeCam, On some asymptotic properties of maximum likelihood estimates and related Bayes estimates, University of California Publ. Statist. 1 (1953), 277-330.

[16] L. LeCam, Locally asymptotically normal families of distributions, Univ. California Publ. Statist. 3 (1960), 37-98.

[17] L. LeCam, Limits of experiments, In: Proc. Sixth Berkeley Symp. Math. Statist. Prob. (L. LeCam, J. Neymen and E. Scott, eds.), Univ. California Press, Berkeley 1 (1972), 245-261.

[18] L. LeCam, Convergence of estimates under dimensionality restrictions, Annals of Statistics 1 (1973), 38-53.

[19] L. LeCam, An infinite dimensional convolution theorem, Proc. 5, Purdue Int. Symp. Stat. Decis. Theory and Reatedl. Topics, Purdue Univ./USA, Springer, 5 (1994), 401-411.

[20] D. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, Inc., New York, London, Sydney, Toronto, 1969.

[21] P. W. Millar, Non-parametric applications of an infinite-dimensional convolution theorem, Z. Wahrscheinlichkeitstheorie Verw. Geb. 68 (1985), 545-556.

[22] J. Pfanzagl, On the measurability and consistency of minimum contrast estimators, Metrika 14 (1969), 249-272.

[23] J. Pfanzagl, Parametric Statistical Theories, Water de Gruyter, 1994.

[24] K. Pötzelberger, W. Schachermayer and H. Strasser, On the convolution theorem for infinite-dimensional parameter spaces, Manuscript, (2000).

[25] J. Qin and J. L. Lawless, Empirical likelihood and general estimating equations, Annals of Statistics 22 (1994), 300-325.

[26] D. S. Robson, Admissible and minimax integer-valued estimators of an integer valued parameters, Annals of Mathematical Statistics 29 (1958), 801-812.

[27] A. Schick and V. Susarla, An infinite dimensional convolution theorem with applications to random censoring and missing data models, Journal of Statistical Planning and Inference 24 (1990), 13-23.

[28] P. K. Sen, The Hájek convolution theorem and empirical Bayes estimation: Parameters, semiparametrics and nonparametrics, Journal of Statistical Planning and Inference 91 (2000), 541-556.

[29] R. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, 1980.

[30] N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, Probability Distributions on Banach Spaces, D. Reidel Publishing Company, Dordrecht/Boston/Lancaster/Tokyo, 1987.

[31] E. R. van den Heuvel and C. A. J. Klassen, Bayes convolution, International Statistical Review 67 (1999), 287-299.

[32] A. W. van der Vaart, An asymptotic representation theorem, International Statistical Review 59 (1991), 97-121.

[33] A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes: With Application to Statistics, Springer-Verlag, New York, 1996.

[34] H. White, Maximum likelihood estimation of misspecified models, Economitrica 50 (1982), 1-25.

[35] J. Xu and J. Wang, Maximum likelihood estimation of linear models for longitudinal data with inequality constraint, Communications in Statistics : Theory and Methods 37(6) (2008), 931-946.