[1] R. Cao, A. Cuevas and W. González Manteiga, A comparative study
of several smoothing methods in density estimation, Computational
Statistics and Data Analysis 17(2) (1994), 153-176.
[2] P. Chaudhuri and J. S. Marron, Sizer for exploration of structures
in curves, Journal of the American Statistical Association 94(447)
(1999), 807-823.
[3] P. Craven and G. Wahba, Smoothing noisy data with spline functions
estimating the correct degree of smoothing by the method of
generalized cross-validation, Numerische Mathematik 31(4) (1979),
377-403.
[4] Bernd Droge, Some Comments on Cross-Validation, Technical Report
1994-7, Humboldt Universitaet Berlin, 1996.
[5] Jianqing Fan and Irene Gijbels, Data-driven bandwidth selection in
local polynomial fitting: Variable bandwidth and spatial adaptation,
Journal of the Royal Statistical Society, Series B (Methodological)
57(2) (1995), 371-394.
[6] W. Härdle, Applied Nonparametric Regression, 1st Edition,
Cambridge University Press, Cambridge, 1990.
[7] W. Härdle, M. Müller, S. Sperlich and A. Wewatz,
Nonparametric and Semiparametric Models, 1st Edition, Springer,
Heidelberg, 2004.
[8] I. Horová and J. Zelinka, Contribution to the bandwidth choice
for kernel density estimates, Computational Statistics 22(1) (2007),
31-47.
[9] I. Horová, J. KoláÄek and J. Zelinka, Kernel Smoothing in
MATLAB, World Scientific, Singapore, 2012.
[10] Jan KoláÄek, Plug-in method for nonparametric regression,
Computational Statistics 23(1) (2008), 63-78.
[11] David W. Scott, Multivariate Density Estimation: Theory,
Practice, and Visualization, Wiley, 1992.
[12] Bernard W. Silverman, Density Estimation for Statistics and Data
Analysis, Chapman and Hall, London, 1986.
[13] M. Stone, Cross-validatory choice and assessment of statistical
predictions, Journal of the Royal Statistical Society Series
B-Statistical Methodology 36(2) (1974), 111-147.
[14] M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman and Hall,
London, 1995.