References

ITERATIVE BANDWIDTH METHOD FOR KERNEL REGRESSION


[1] R. Cao, A. Cuevas and W. González Manteiga, A comparative study of several smoothing methods in density estimation, Computational Statistics and Data Analysis 17(2) (1994), 153-176.

[2] P. Chaudhuri and J. S. Marron, Sizer for exploration of structures in curves, Journal of the American Statistical Association 94(447) (1999), 807-823.

[3] P. Craven and G. Wahba, Smoothing noisy data with spline functions estimating the correct degree of smoothing by the method of generalized cross-validation, Numerische Mathematik 31(4) (1979), 377-403.

[4] Bernd Droge, Some Comments on Cross-Validation, Technical Report 1994-7, Humboldt Universitaet Berlin, 1996.

[5] Jianqing Fan and Irene Gijbels, Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth and spatial adaptation, Journal of the Royal Statistical Society, Series B (Methodological) 57(2) (1995), 371-394.

[6] W. Härdle, Applied Nonparametric Regression, 1st Edition, Cambridge University Press, Cambridge, 1990.

[7] W. Härdle, M. Müller, S. Sperlich and A. Wewatz, Nonparametric and Semiparametric Models, 1st Edition, Springer, Heidelberg, 2004.

[8] I. Horová and J. Zelinka, Contribution to the bandwidth choice for kernel density estimates, Computational Statistics 22(1) (2007), 31-47.

[9] I. Horová, J. Koláček and J. Zelinka, Kernel Smoothing in MATLAB, World Scientific, Singapore, 2012.

[10] Jan Koláček, Plug-in method for nonparametric regression, Computational Statistics 23(1) (2008), 63-78.

[11] David W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, Wiley, 1992.

[12] Bernard W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, London, 1986.

[13] M. Stone, Cross-validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society Series B-Statistical Methodology 36(2) (1974), 111-147.

[14] M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman and Hall, London, 1995.