References

LOCAL INFLUENCE IN COMPOUND-POISSON MODELS: PERTURBING THE MEAN-VARIANCE RELATION


[1] P. Alegre, N. Liseras and L. Ricci, Una aplicación de los modelos Tweedie a las decisiones económicas de los hogares, VII Congreso Latinoamericano de Sociedades de Estadística, Rosario, Argentina, 7 (2006), 16-17.

[2] R. J. Beckman, C. J. Natsheim and R. Dennis Cook, Diagnostics for mixed-models analysis of variance, Technometrics 29 (1987), 413-426.

[3] S. G. Candy, Modelling catch and effort data using generalized linear models, the Tweedie distribution, random vessel effects and random stratum-by-year effects, CCAMLR Science 11 (2004), 59-80.

[4] R. D. Cook, Assesment of local influence, Journal of the Royal Statistical Society B 48 (1986), 133-169.

[5] P. K. Dunn, Occurrence and quantity of precipitation can be modelled simultaneously, International Journal of Climatology 24 (2004), 1231-1239.

[6] P. K. Dunn and G. K. Smyth, Series evaluation of Tweedie exponential dispersion model densities, Statistics and Computing 15 (2005), 267-280.

[7] P. K. Dunn and G. K. Smyth, Evaluation of Tweedie exponential dispersion model densities by Fourier inversion, Statistics and Computing 18 (2008), 73-86.

[8] Y.-Z. Fu, N.-S. Tang and X. Chen, Local influence analysis of nonlinear structural equation models with nonignorable missing outcomes from reproductive dispersion models, Computational Statistics and Data Analysis 53 (2009), 3671-3684.

[9] M. Galea, H. Bolfarine and F. Vilca, Local influence in comparative calibration models under elliptical t-distributions, Biometrical Journal 47 (2005), 691-706.

[10] J. Hardin and J. Hilbe, Generalized Linear Models and Extensions, Stata Press, 2001.

[11] B. Jorgensen, The Theory of Exponential Dispersion Models and Analysis of Deviance, Volume 51, Monografías de Matemática, IMPA, Rio de Janeiro, Brasil, 1992.

[12] B. Jorgensen, The Theory of Dispersion Models, Chapman and Hall, 1997.

[13] B. Jørgensen, J. R. Martínez and V. Vinogradov, Domains of attraction to Tweedie distributions, Lithuanian Mathematical Journal 49 (2009), 399-425.

[14] A. J. Lawrence, Regression transformation diagnostics using local influence, Journal of the American Statistical Association 84 (1988), 125-141.

[15] G. Molenberghs, G. Verbeke, H. Thijs, E. Lesaffre and M. G. Kenward, Influence analysis to assess sensitivity of the drop out process, Computational Statistics and Data Analysis 37 (2001), 93-113.

[16] J. A. Nelder and R. W. M. Wedderburn, Generalized linear models, Journal of the Royal Statistical Society, Series A 135 (1992), 370-384.

[17] E. M. M. Ortega, H. Bolfarine and G. A. Paula, Influence diagnostic in generalized log-gamma regression models, Computational Statistics and Data Analysis 42 (2003), 165-186.

[18] F. Osorio, G. A. Paula and M. Galea, Assesment of local influence in elliptical linear models with longitudinal structure, Computational Statistics and Data Analysis 51 (2007), 4354-4368.

[19] G. A. Paula, Assessing local influence in restricted regression models, Computational Statistics and Data Analysis 16 (1993), 73-79.

[20] H. Shono, Application of the Tweedie distribution to zero-catch data in CPUE analysis, Fisheries Research 93 (2008), 154-162.

[21] G. K. Smyth and B. Jorgensen, Fitting Tweedie’s compound Poisson model to insurance claims data: Dispersion modelling, Astin Bulletin 32 (2002), 143-157.

[22] C. F. Svetliza and G. A. Paula, Diagnostics in nonlinear negative binomial models, Communications in Statistics 32 (2003), 1227-1250.

[23] N.-S. Tang, B.-Ch. Wei and X.-R. Wang, Local influence in nonlinear reproductive dispersion models, Communications in Statistics, Theory and Methods 30 (2001), 435-449.

[24] W. Thomas and R. D. Cook, Assesing influence on regression coefficients in generalized linear models, Biometrika 76 (1989), 741-749.

[25] C. H. Tsai and X. Wu, Assessing local influence in linear regression models with first order autorregressive or heteroscedastic errors structure, Statistics and Probability Letters 14 (1992), 247-252.

[26] M. Tweedie, An index which distinguishes between some important exponential families, Statistics: Applications and new directions, Proceedings of the Indian Statistical Institute Golden Jubilee International Conference, Series A 135 (1984), 579-604.

[27] F.-Ch. Xie and B.-Ch. Wei, Influence analysis in Poisson inverse Gaussian regression models based on the em algorithm, Metrika 67 (2008), 49-72.