[1] A. Aytek, Co-active neuro-fuzzy inference system for
evapotranspiration modelling, Soft Comput. (2008). Doi: 10.
1007/s00500-008-0342-8
[2] A. Aytek and M. Alp, An application of artificial intelligence for
rainfall runoff modelling, J. Earth Syst. Sci. 117(2) (2008),
145-155.
[3] A. Aytek and O. Kisi, A genetic programming approach to suspended
sediment modelling, J. Hydrol. 351 (2008), 288-298.
[4] V. Babovic and M. Keijzer, Rainfall runoff modelling based on
genetic programming, Nord. Hydrol. 33 (2002), 331-343.
[5] R. D. Burman, Intercontinental comparison of evaporation
estimates, J. Irrig. Drain Eng. 102 (1976), 109-118.
[6] Defra, Risk, Performance and Uncertainty in Flood and Coastal
Defence: A Review; by P. B. Sayers, B. P. Gouldby, J. D. Simm, I.
Meadowcroft and J. Hall, R&D Technical Report FD2302/TR1 (2003).
[7] J. Doorenbos and W. O. Pruitt, Crop water requirements, FAO
Irrigation and Drainage Paper, No. 24, FAO, Rome, 1977.
[8] J. P. Drecourt, Application of Neural Networks and Genetic
Programming to Rainfall Runoff Modelling, D2K Technical Report
0699-1-1, Danish Hydraulic Institute, Denmark, 1999.
[9] EA, Estimation of Open Air Evaporation, R&D W6-048 (2001).
[10] C. Ferreira, Gene Expression Programming in Problem Solving,
Paper presented at the 6th Online World Conference on Soft Computing
in Industrial Applications (invited tutorial), (2001a).
[11] C. Ferreira, Gene expression programming: A new adaptive
algorithm for solving problems, Complex Sys. 13(2) (2001b), 87-129.
[12] H. Gavin and C. A. Agnew, Modelling actual, reference and
equilibrium evaporation from a temperate wet grassland, Hydrolo. Proc.
18 (2004), 229-246.
[13] M. A. Ghorbani, O. Makarynskyy, J. Shiri and D. Makarynska,
Genetic programming for sea level predictions in an island
environment, Int. J. Ocean Climate Sys. 1(1) (2010), 27-35.
[14] O. Giustolisi, Using GP to determine Chezy resistance coefficient
in corrugated channels, J. Hydroinfo. (2004), 157-173.
[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Reading, Mass, 1989.
[16] A. Guven, A. Aytek, M. I. Yuce and H. Aksoy, Genetic
programming-based empirical model for daily reference
evapotranspiration estimation, Clean 36(10-11) (2008), 905-912.
[17] M. E. Jensen (eds), Consumptive Use of Water and Irrigation Water
Requirements, ASCE, New York, NY, 1974.
[18] R. Khatibi, Barriers Inherent in Flood Forecasting and their
Treatments, In: D. W. Knight and A. Y. Shamseldin (eds), River Basin
Management for Flood Risk Mitigation (2006).
[19] O. Kisi, Daily pan evaporation modelling using a neuro-fuzzy
computing technique, J. Hydrol. 329 (2006a), 636-646.
[20] O. Kisi, Generalized regression neural networks for
evapotranspiration modelling, Hydrol. Sci. J. 51(6) (2006b),
1092-1105.
[21] O. Kisi, Evapotranspiration estimation using feed forward neural
networks, Nord. Hydrol. 37(3) (2006c), 247-260.
[22] O. Kisi, Evapotranspiration modelling from climate data using a
neural computing technique, Hydrol. Proc. 21(6) (2007), 1925-1934.
[23] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, The MIT Press, Cambridge, MA, 1992.
[24] M. Kumar, N. S. Raghuwanshi, R. Singh, W. W. Wallender and W. O.
Pruitt, Estimating evapotranspiration using artificial neural
networks, J. Irrig. Drain Eng. 128(4) (2002), 224-233.
[25] D. R. Legates and G. J. McCabe, Evaluating the use of
“goodness - of - fit†measures in hydrologic and
hydroclimatic validation, Water Resour. Res. 35(1) (1999), 233-241.
[26] E. T. Linarce, Climate and evaporation from crops, J. Irrig.
Drain Eng. 93 (1967), 61-79.
[27] S. Y. Liong, T. R. Gautam, S. T. Khu, V. Babovic, M. Keijzer and
N. Muttil, Genetic programming: A new paradigm in rainfall runoff
modelling, J. Amer. Water Resour. Assoc. 38(3) (2002), 705-718.
[28] A. Moghaddamnia, M. Ghafari Gousheh, J. Piri, S. Amin and D. Han,
Evaporation estimation using artificial neural networks and adaptive
neuro-fuzzy inference system techniques, Adv. Water Resour. 32 (2009),
88-97. DOI 10.1016/j.advwaters. 2008. 10.005
[29] N. Muttil and S. Y. Liong, Improving Runoff Forecasting by Input
Variable Selection in GP, Paper presented at the Proceedings of
World Water Congress, ASCE, 2001.
[30] R. Poli and N. F. McPhee, Covariant Parsimony Pressure for
Genetic Programming, Technical Report CES-480, ISSN: 1744-8050,
(2008).
[31] A. M. A. Salih and U. Sendil, Evapotranspiration under extremely
arid climates, J. Irrig. Drain Eng. 110(3) (1984), 289-303.
[32] A. D. Savic, A. G. Walters and J. W. Davidson, A genetic
programming approach to rainfall runoff modelling, Water Resour.
Manage 13 (1999), 219-231.
[33] A. F. Sheta and A. Mahmoud, Forecasting using Genetic
Programming, Paper presented at the 33-rd Southeastern Symposium on
System Theory, (2001), 343-347.
[34] J. C. Stephen and E. H. Stewart, A comparison of procedures for
computing evaporation and evapotranspiration, Publication 62,
International Association of Scientific Hydrology, International Union
of Geodynamics and Geophysics, Berkeley, CA, (1963), 123-133.
[35] K. P. Sudheer, A. K. Goasin and K. S. Ramasastri, Estimating
actual evapotranspiration from limited climate data using neural
computing technique, J. Irrig. Drain Eng. 129(3) (2003), 214-218.
[36] O. Terzi and M. E. Keskin, Evaporation estimation using gene
expression programming, J. Appl. Sci. 5(3) (2005), 508-512.
[37] S. Trajkovic, Temperature-based approaches for estimating
reference evapotranspiration, J. Irrig. Drain Eng. 131(4) (2005),
316-323.