References

USING DATA MINING TOOLS TO FIND SIMILARITIES IN GENETIC PREDICTORS FOR COLON CANCER RECURRENCE


[1] Y. Assenov, F. Ramirez and S. E. Schelhorn et al., Computing topological parameters of biological networks, Bioinformatics 24 (2008), 282-284.

[2] A. Barrier, A. Lemoine and P. Y. Boelle et al., Colon cancer prognosis prediction by gene expression profiling, Oncogene 24 (2005), 6155-6164.

[3] A. Barrier, P. Y. Boelle and F. Roser et al., Stage II colon cancer prognosis prediction by tumor gene expression profiling, J. Clin. Oncol. 24 (2006), 4685-4691.

[4] S. I. Berger, J. M. Posner and A. Ma’ayan, Genes2Networks: Connecting lists of gene symbols using mammalian protein interactions databases, BMC Bioinformatics 8 (2007), 372.

[5] K. Birkenkamp-Demtroder, F. Mansilla and F. B. Sorensen et al., Phosphoprotein Keratin23 accumulates in MSS but not MSI colon cancers in vivo and impacts viability and proliferation in vitro, Molecular Oncology 1 (2007), 181-195.

[6] J. L. Chen, J. Li, W. M. Stadler and Y. A. Lussier, Protein-network modelling of prostate cancer gene signatures reveals essential pathways in disease recurrence, Journal of the American Medical Informatics Associations: JAMIA 18 (2011), 392-402.

[7] M. Dettling, E. Gabrielson and G. Parmigiani, Searching for differentially expressed gene combinations, Genome Biology 6 (2005), R88.

[8] D. A. Dos Santos and R. Deutsch, The positive matching index: A new similarity measure with optimal characteristics, Pattern Recognition Letters 31 (2010), 1570-1576.

[9] S. Eschrich, I. Yang and G. Bloom et al., Molecular staging for survival prediction of colorectal cancer patients, J. Clin. Oncol. 23 (2005), 3526-3535.

[10] K. Garman, C. Acharya and E. Edelman et al., A genomic approach to colon cancer risk stratification yields biologic insights into therapeutic opportunities, PNAS 105 (2008), 19431-19436.

[11] V. Heinemann, S. Stintzing and T. Kirchner et al., Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR, Cancer Treatment Reviews 35 (2009), 262-271.

[12] R. Jorissen, P. Gibbs and M. Christie et al., Metastasis-associated gene expression changes predict poor outcomes in patients with dukes stage B and C colorectal cancer, Clin. Cancer. Res. 15 (2009), 7642-7651.

[13] Y. H. Lin, J. Friederichs, M. A. Black, J. Mages and R. Rosenberg et al., Multiple gene expression classifiers from different array platforms predict poor prognosis of colorectal cancer, Clinical Cancer Research 13 (2007), 498-507.

[14] P. Shannon, A. Markiel and O. Ozier et al., Cytoscape: A software environment for integrated models of biomolecular interaction networks, Genome Res. 13 (2003), 2498-2504.

[15] M. Shi, D. R. Beauchamp and B. Zhang, A network-based gene expression signature informs prognosis and treatment for colorectal cancer patients, (2011).

[16] M. L. Slattery, C. Sweeney and M. Murtaugh et al., Associations between vitamin D, vitamin D receptor gene and the androgen receptor gene with colon and rectal cancer, International J. of Cancer 118 (2006), 3140-3146.

[17] J. J. Smith, N. G. Deane and F. Wu et al., Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer, Gastroenterology 138 (2009), 958-968.

[18] Y. X. Wang, T. Jatkoe, Y. Zhang, M. G. Mutch and D. Talantov et al., Gene expression profiles and molecular markers to predict recurrence of dukes’ B colon cancer, Journal of Clinical Oncology 22 (2004), 1564-1571.

[19] J. Yoon, A. Blumer and K. Lee, An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality, Bioinformatics 22 (2006), 3106-3108.

[20] B. Zhang, S. Kirov and J. Snoddy et al., WebGestalt: An integrated system for exploring gene sets in various biological contexts, Nucleic Acids Res. 33 (2005), W741-W748.