[1] Y. Assenov, F. Ramirez and S. E. Schelhorn et al., Computing
topological parameters of biological networks, Bioinformatics 24
(2008), 282-284.
[2] A. Barrier, A. Lemoine and P. Y. Boelle et al., Colon cancer
prognosis prediction by gene expression profiling, Oncogene 24 (2005),
6155-6164.
[3] A. Barrier, P. Y. Boelle and F. Roser et al., Stage II colon
cancer prognosis prediction by tumor gene expression profiling, J.
Clin. Oncol. 24 (2006), 4685-4691.
[4] S. I. Berger, J. M. Posner and A. Ma’ayan, Genes2Networks:
Connecting lists of gene symbols using mammalian protein interactions
databases, BMC Bioinformatics 8 (2007), 372.
[5] K. Birkenkamp-Demtroder, F. Mansilla and F. B. Sorensen et al.,
Phosphoprotein Keratin23 accumulates in MSS but not MSI colon cancers
in vivo and impacts viability and proliferation in vitro, Molecular
Oncology 1 (2007), 181-195.
[6] J. L. Chen, J. Li, W. M. Stadler and Y. A. Lussier,
Protein-network modelling of prostate cancer gene signatures reveals
essential pathways in disease recurrence, Journal of the American
Medical Informatics Associations: JAMIA 18 (2011), 392-402.
[7] M. Dettling, E. Gabrielson and G. Parmigiani, Searching for
differentially expressed gene combinations, Genome Biology 6 (2005),
R88.
[8] D. A. Dos Santos and R. Deutsch, The positive matching index: A
new similarity measure with optimal characteristics, Pattern
Recognition Letters 31 (2010), 1570-1576.
[9] S. Eschrich, I. Yang and G. Bloom et al., Molecular staging for
survival prediction of colorectal cancer patients, J. Clin. Oncol. 23
(2005), 3526-3535.
[10] K. Garman, C. Acharya and E. Edelman et al., A genomic approach
to colon cancer risk stratification yields biologic insights into
therapeutic opportunities, PNAS 105 (2008), 19431-19436.
[11] V. Heinemann, S. Stintzing and T. Kirchner et al., Clinical
relevance of EGFR- and KRAS-status in colorectal cancer patients
treated with monoclonal antibodies directed against the EGFR, Cancer
Treatment Reviews 35 (2009), 262-271.
[12] R. Jorissen, P. Gibbs and M. Christie et al.,
Metastasis-associated gene expression changes predict poor outcomes in
patients with dukes stage B and C colorectal cancer, Clin. Cancer.
Res. 15 (2009), 7642-7651.
[13] Y. H. Lin, J. Friederichs, M. A. Black, J. Mages and R. Rosenberg
et al., Multiple gene expression classifiers from different array
platforms predict poor prognosis of colorectal cancer, Clinical Cancer
Research 13 (2007), 498-507.
[14] P. Shannon, A. Markiel and O. Ozier et al., Cytoscape: A software
environment for integrated models of biomolecular interaction
networks, Genome Res. 13 (2003), 2498-2504.
[15] M. Shi, D. R. Beauchamp and B. Zhang, A network-based gene
expression signature informs prognosis and treatment for colorectal
cancer patients, (2011).
[16] M. L. Slattery, C. Sweeney and M. Murtaugh et al., Associations
between vitamin D, vitamin D receptor gene and the androgen receptor
gene with colon and rectal cancer, International J. of Cancer 118
(2006), 3140-3146.
[17] J. J. Smith, N. G. Deane and F. Wu et al., Experimentally derived
metastasis gene expression profile predicts recurrence and death in
patients with colon cancer, Gastroenterology 138 (2009), 958-968.
[18] Y. X. Wang, T. Jatkoe, Y. Zhang, M. G. Mutch and D. Talantov et
al., Gene expression profiles and molecular markers to predict
recurrence of dukes’ B colon cancer, Journal of Clinical
Oncology 22 (2004), 1564-1571.
[19] J. Yoon, A. Blumer and K. Lee, An algorithm for modularity
analysis of directed and weighted biological networks based on
edge-betweenness centrality, Bioinformatics 22 (2006), 3106-3108.
[20] B. Zhang, S. Kirov and J. Snoddy et al., WebGestalt: An
integrated system for exploring gene sets in various biological
contexts, Nucleic Acids Res. 33 (2005), W741-W748.