[1] K. A. Broughan, Vanishing of the integral of the Hurwitz zeta
function, Bull. Austral. Math. Soc. 65 (2002), 161-167.
[2] K. Ditcher, Bernoulli numbers and confluent hypergeometric
functions, Number Theory for the Millennium, I (Urbana, IL, 2000),
343-363, A. K. Peters, Natick, MA, 2002.
[3] H. M. Edwards, Riemann’s Zeta Function, Pure and Applied
Mathematics Series, Academic Press, 1974.
[4] A. Hassen and H. D. Nguyen, Hypergeometric Zeta Function,
Preprint, 2005.
[5] A. S. B. Holland, Introduction to the Theory of Entire Functions,
Academic Press, 1973.
[6] F. T. Howard, A sequence of numbers related to the exponential
function, Duke Math. J. 34 (1967), 599-616.
[7] F. T. Howard, Some sequences of rational numbers related to the
exponential function, Duke Math. J. 34 (1967), 701-716.
[8] F. T. Howard, Numbers generated by the reciprocal of Mathematics of Computation 31(138) (1977),
581-598.
[9] B. E. Peterson, Riemann Zeta Function, Lecture Notes, 1996.
[10] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen
Grosse (On the Number of Prime Numbers less than a Given
Quantity), 1859, Translated by D. R. Wilkins, 1998.
[11] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford
University Press, 1967.