References

A PRODUCT FORMULA RELATED TO THE DIOPHANTINE EQUATION


[1] B. Anglès, Units and norm residue symbol, Acta Arith. 98(1) (2001), 33-51.

[2] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, PARI GP 2.0.12 Alpha Power PC Version, Université Bordeaux I, 1989-1998.

[3] H. Brückner, Explizites Reziprozitätsgesetz und Anwendungen, Vorlesungen Fachberich Math. Univ. Essen, Heft 2 (1979), 83.

[4] A. Granville, The Kummer-Wieferich-Skula Approach to the First Case of Fermat’s Last Theorem, Gouvêa, Fernando (ed.) et al., Advances in Number Theory, The Proceedings of the Third Conference of the Canadian Number Theory Association, Clarendon Press, Oxford, (1993), 479-497.

[5] G. Gras, Class Field Theory: From Theory to Practice, SMM, Springer-Verlag, 2003; Second corrected printing, 2005.

[6] G. Gras, Analysis of the classical cyclotomic approach to Fermat’s last theorem, Publ. Math. de Besançon, Algèbre et Théorie des Nombres, Actes de la Conférence Fonctions L et arithmétique, Besançon 2009; Presses Universitaires de Franche-Comté (2010), 85-119.

[7] G. Gras and R. Quême, Vandiver papers on cyclotomy revisited and Fermat’s last theorem, Publ. Math. de Besançon, Algèbre et Théorie des Nombres, Presses Universitaires de Franche-Comté (2012), (to appear).

[8] K. Hatada, Chi-square tests for mod 1 distribution of Fermat and Fibonacci quotients, Sci. Rep. Fac. Educ., Gifu Univ., Nat. Sci. 12 (1988), 1-2; Mod 1 distribution of Fermat and Fibonacci quotients and values of zeta functions at Comment. Math. Univ. St. Pauli 36 (1987), 41-51.

[9] H. Koch (A. N. Parshin, I. R. Shafarevich and R. V. Gamkrelidze, Eds.), Number Theory II, Algebraic Number Theory, Encycl. Math. Sci., Vol. 62, Springer-Verlag, 1992; Second printing: Algebraic Number Theory, Springer-Verlag, 1997.

[10] M. Kurihara, Some remarks on conjectures about cyclotomic fields and k-groups of Compositio Math. 81 (1992), 223-236.

[11] P. Mihăilescu, On Vandiver’s Best Result on FLT1, Nonlinear Analysis: Stability, Approximation and Inequalities- A Volume Dedicated to the 60th Anniversary of Themistocles M. Rassias, G. Georgiev, P. Pardalos and H. M. Srivastava (Editors), Springer-Verlag, New York, 2012.

[12] S. Sitaraman, Vandiver revisited, J. Number Theory 57(1) (1996), 122-129.

[13] S. Sitaraman, On a Fermat type Diophantine equation, J. Number Theory 80(2) (2000), 174-186.

[14] S. Sitaraman, Note on a Fermat type Diophantine equation, J. Number Theory 99(1) (2003), 29-35.

[15] H. S. Vandiver, A property of cyclotomic integers and its relation to Fermat’s last theorem, Ann. Math. 21 (1919/1920), 73-80.

[16] H. S. Vandiver, Application of the Theory of Relative Cyclic Fields to both Cases of Fermat’s Last Theorem, Transaction of the AMS 28 (1926), 554-560; Application of the Theory of Relative Cyclic Fields to both Cases of Fermat’s Last Theorem (second paper), Transactions of the AMS 29 (1927), 154-162.

[17] L. C. Washington, Introduction to Cyclotomic Fields, Second Edition, Springer-Verlag, 1997.