[1] J. Alaminos, M. Mathieu and A. Villena, Symmetric amenability and
Lie derivations, Math. Proc. Cambridge Philos. Soc. 137 (2004),
433-439.
[2] M. Brešar, Characterizing homomorphisms, derivations and
multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect.
A 137 (2007), 9-21.
[3] W. Cheung, Lie derivations of triangular algebra, Linear
Multilinear Algebra 51 (2003), 299-310.
[4] B. Johnson, Symmetric amenability and the nonexistence of Lie and
Jordan derivations, Math. Proc. Cambridge Philos. Soc. 120 (1996),
455-473.
[5] J. Li and Z. Pan, Annihilator-preserving maps, multipliers, and
derivations, Linear Algebra Appl. 432 (2010), 5-13.
[6] F. Lu, Lie derivation of certain CSL algebras, Israel J. Math. 155
(2006), 149-156.
[7] F. Lu and B. Liu, Lie derivations of reflexive algebras, Integr.
Equ. Oper. Theory 64 (2009), 261-271.
[8] F. Lu and W. Jing, Characterizations of Lie derivation of
Linear Algebra Appl. 432 (2010), 89-99.
[9] M. Mathieu and A. Villena, The structure of Lie derivations on
J. Funct. Anal. 202 (2003), 504-525.
[10] C. Miers, Lie derivations of von Neumann algebras, Duke Math. J.
40 (1973), 403-409.
[11] A. Sands, Radicals and Morita contexts, J. Algebra 24 (1973),
335-345.
[12] L. Zhang, J. Zhu and J. Wu, All-derivable points in nest
algebras, Linear Algebra Appl. 433 (2010), 91-100.