References

CHARACTERIZATIONS OF LIE DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS


[1] J. Alaminos, M. Mathieu and A. Villena, Symmetric amenability and Lie derivations, Math. Proc. Cambridge Philos. Soc. 137 (2004), 433-439.

[2] M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 9-21.

[3] W. Cheung, Lie derivations of triangular algebra, Linear Multilinear Algebra 51 (2003), 299-310.

[4] B. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc. 120 (1996), 455-473.

[5] J. Li and Z. Pan, Annihilator-preserving maps, multipliers, and derivations, Linear Algebra Appl. 432 (2010), 5-13.

[6] F. Lu, Lie derivation of certain CSL algebras, Israel J. Math. 155 (2006), 149-156.

[7] F. Lu and B. Liu, Lie derivations of reflexive algebras, Integr. Equ. Oper. Theory 64 (2009), 261-271.

[8] F. Lu and W. Jing, Characterizations of Lie derivation of Linear Algebra Appl. 432 (2010), 89-99.

[9] M. Mathieu and A. Villena, The structure of Lie derivations on J. Funct. Anal. 202 (2003), 504-525.

[10] C. Miers, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973), 403-409.

[11] A. Sands, Radicals and Morita contexts, J. Algebra 24 (1973), 335-345.

[12] L. Zhang, J. Zhu and J. Wu, All-derivable points in nest algebras, Linear Algebra Appl. 433 (2010), 91-100.