References

MEAN VALUE OF THE TWISTED COCHRANE SUMS


[1] Y. Lu and Y. Yi, On Cochrane sums over short intervals, J. Math. Anal. Appl. 356 (2009), 502-516.

[2] G. Pólya, Über die Verteilung der quadratische Reste und Nichtreste, Göttingen Nachrichten (1918), 21-29.

[3] D. Ren and Y. Yi, On the mean value of general Cochrane sum, Proc. Japan Acad., Ser. A 86 (2010), 1-5.

[4] I. M. Vinogradov, On the distribution of residues and non-residues of powers, J. Phys. Math. Soc. Perm 1 (1918), 94-96.

[5] A. Weil, Sur les courbes algébriques et les variétés qui sén déduisent, Actualités Sci. Ind. 1041 (1948).

[6] W. Zhang and Y. Yi, On the upper bound estimate of Cochrane sums, Soochow J. Math. 28 (2002), 297-304.

[7] W. Zhang, On a sum analogous to Dedekind sum and its mean square value formula, Int. J. Math. Math. Sci. 32 (2002), 47-55.

[8] W. Zhang, On a Cochrane sum and its hybrid mean value formula, J. Math. Anal. Appl. 267 (2002), 89-96.

[9] W. Zhang, On a Cochrane sum and its hybrid mean value formula (II), J. Math. Anal. Appl. 276 (2002), 446-457.