References

ON TWO CONTROVERSIAL ESTIMATES IN NUMBER THEORY


[1] E. A. Bender, O. Patashnik and H. Rumsey Jr., Pizza slicing, Phi’s, and the Riemann hypothesis, Amer. Math. Monthly 101 (1994), 307-317.

[2] P. Bundschuh, Einführung in die Zahlentheorie, Springer Verlag, 1988.

[3] Encyclopedic Dictionary of Mathematics, Nihon Sugakkai, English Translation of the Third Edition, M.I.T. Press, 1987.

[4] Encyclopedia of Mathematics, Vol. 9 ed.-in-Chief I. M. Vinogradov, Updated and Annotated English Translation, Kluwer Acad. Publ., Dordrecht, 1993.

[5] Loo-Keng Hua, Introduction to Number Theory, Springer Verlag, 1982.

[6] A. E. Ingham, Review 3954, A. M. S. Reviews 28 (1964).

[7] A. Ivić, The Riemann Zeta-Function, John Wiley and Sons, 1985.

[8] N. M. Korobov, Estimates of trigonometrical sums and their applications (in Russian), Uspekhi Mat. Nauk. 13(4) (1958), 185-192.

[9] N. M. Korobov, Exponential Sums and their Applications, Kluwer Acad. Press, Dordrecht, 1992.

[10] Y.-F. S. Pétermann, On an estimate of Walfisz and Saltykov for an error term related to the Euler function, J. Theorie des Nombres de Bordeaux 10 (1998), 203-236.

[11] S. S. Pillai and S. D. Chowla, On the error terms in some asymptotic formulae in the theory of numbers I, J. London Math. Soc. 5 (1930), 95-101.

[12] H.-E. Richert, Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen Math. Ann. 169 (1967), 97-101.

[13] A. I. Saltykov, On Euler’s function (in Russian), Vestnik Moskov. Univ., Ser. I Mat. Meh. (1960), 34-50.

[14] E. C. Titchmarsh and (Revised by) D. R. Heath-Brown, The Theory of the Riemann Zeta-Function, Second Edition, Clarendon Press, Oxford, 1986.

[15] I. M. Vinogradov, A new estimate of the function (in Russian), Izv. Acad. Nauk. SSSR Ser. Mat. 22 (1958), 161-164.

[16] I. M. Vinogradov, Trigonometrical Sums in Number Theory, Stat. Publ. Soc. Calcutta, 1975.

[17] I. M. Vinogradov, The Method of Trigonometric Sums in Number Theory, Second Edition, Moscow 1980 in: Selected Works, Springer Verlag, 1985.

[18] A. Walfisz, Über die Wirksamkeit einiger Abschätzungen trigonometrischer summen, Acta Arith. 4 (1958), 108-180.

[19] A. Walfisz, Weylsche Exponentialsummen in der Neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963.