[1] A. Behera and G. K. Panda, On the square roots of triangular
numbers, Fibonacci Quart. 37(2) (1999), 98-105.
[2] L. E. Dickson, History of the Theory of Numbers, Volume 2,
Strechert, New York, 1971.
[3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers, Fifth Edition, Oxford University Press, New York, 1979.
[4] D. Kalman and R. Mena, The Fibonacci numbers-exposed, Mathematics
Magazine 76 (2003), 167-181.
[5] R. Keskin and B. Demirtürk, Solution of some Diophantine
equations using generalized Fibonacci and Lucas sequences, Ars
Combinatorica (accepted).
[6] J. B. Muskat, Generalized Fibonacci and Lucas sequences and
rootfinding methods, Mathematics of Computation 61(203) (1993),
365-372.
[7] G. K. Panda and P. K. Ray, Cobalancing numbers and cobalancers,
International Journal of Mathematics and Mathematical Sciences 8
(2005), 1189-1200.
[8] G. K. Panda, Some fascinating properties of balancing numbers,
Fibonacci Numbers and their Applications 10 (2006).
[9] D. C. D. Potter, Triangular square numbers, The Mathematical
Gazette 56(396) (1972), 109-110.
[10] S. Rabinowitz, Algorithmic Manipulation of Fibonacci Identities,
Application of Fibonacci Numbers, Volume 6, Kluwer Academic Publ.,
Dordrect, The Netherlands, (1996), 389-408.
[11] P. Ribenboim, My Numbers, My Friends, Springer-Verlag, New York,
Inc., 2000.
[12] M. R. Schroeder, Number Theory in Science and Communication,
Springer, 2005.
[13] S. A. Shirali, Fun with Triangular Numbers, 2010,
http://www.mathcelebration.com/PDF/TriangleNumPDF.p
df
[14] Stanford Math Circle, Sunday, May 9, 2010, Square-Triangular
Numbers, Pell’s Equation and Continued Fractions,
http://math.standfor.edu/circle/Pell.pdf
[15] K. B. Subramaniam, A simple computation of square triangular
numbers, International Journal of Mathematics Education in Science and
Technology 23 (1992), 790-793.
[16] K. B. Subramaniam, A divisibility properties of square triangular
numbers, International Journal of Mathematics Education in Science and
Technology 26 (1995), 284-286.
[17] James J. Tattersall, Elementary Number Theory in Nine Chapters,
Cambridge University Press, 2011.
[18] Z. Yosma and R. Keskin, Some new identities concerning
generalized Fibonacci and Lucas numbers (submitted).