[1] P. Erdös and G. Szekeres, A combinatorial problem in geometry,
Compositio Mathematica 2 (1935), 463-470.
[2] P. Erdös and G. Szekeres, On some extremum problems in
elementary geometry, Annales Universitatis Scientiarum Budapestinensis
de Rolando Eotvos Nominatae 3-4 (1960-61), 53-62.
[3] W. E. Bonnice, On convex polygons determined by a finite planar
set, American Mathematical Monthly 81(7) (1974), 749-752.
DOI: https://doi.org/10.1080/00029890.1974.11993658
[4] J. D. Kalbfleisch, J. G. Kalbfleisch and R. G. Stanton, A
combinatorial problem on convex n-gons, in: Proc. Louisiana
Conf. Combinatorics, Graph Theory, and Computing, Baton Rouge (1970),
180-188.
[5] G. Szekeres and L. Peters, Computer solution to the 17-point
Erdös-Szekeres problem, ANZIAM Journal 48(2) (2006), 151-164.
DOI: https://doi.org/10.1017/S144618110000300X
[6] G. Tóth and P. Valtr, The Erdös-Szekeres theorem: Upper
bounds and related results, in: Combinatorial and Computational
Geometry, J. E. Goodman et al., Editors, Cambridge University Press,
MSRI Publications 52 (2005), to appear.
[7] W. Morris and V. Sltan, The Erdos-Szekeres problem on points in
convex position – A survey, Bulletin of the American
Mathematical Society 37(4) (2000), 437-458.
DOI: https://doi.org/10.1090/S0273-0979-00-00877-6
[8] P. Erdös, Combinatorial problems in geometry and number theory,
Relations between combinatorics and other parts of mathematics, Proc.
Conf. Ohio State University, Columbus, Proc. Symp. Pur Math., Volume
34, 149-162.