[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A.
Wilson, Atlas of finite groups: Maximal subgroups and ordinary
characters for simple groups, With computational assistance from J. G.
Thackray, Oxford University Press, Eynsham, 1985.xxxiv+252 pp.
[2] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and
Groups, Springer-Verlag, New York, 1988.
[3] R. T. Curtis, A new combinatorial approach to Mathematical Proceedings of the Cambridge
Philosophical Society 79(1) (1976), 25-42.
DOI: https://doi.org/10.1017/S0305004100052075
[4] N. Kilic, On rank 2 geometries of the Mathieu group Analele Stiintifice ale Universitatii Ovidius
Constanta, Seria Matematica 18(2) (2010), 131-147.
[5] E. Mathieu, Mémoire sur l'étude des fonctions de plusieurs
quantités, sur la manière de les former et sur les substitutions
qui les laissent invariables, Journal de Mathématiques Pures et
Appliquées 6(2) (1861), 241-223.
[6] E. Mathieu, Sur la fonction cinq fois transitive de 24
quantités, Journal de Mathématiques Pures et Appliquées 18(2)
(1873), 25-46.
[7] M. A. Ronan and S. D. Smith, 2-local geometries for some sporadic
groups, Proceedings of Symposia in Pure Mathematics 37 (1980),
283-289.
[8] P. Rowley and L. Walker, The point-line collinearity graph of the
maximal 2-local geometry: The first three
discs, MIMS E-Print 2015.97.
[9] P. Rowley and B. Wright, Structure of the maximal 2-local geometry point-line
collinearity graph, LMS Journal of Computation and Mathematics 19(1)
(2016), 105-154.
DOI: https://doi.org/10.1112/S1461157016000036
[10] E. Witt, Die 5-fach transitiven gruppen von Mathieu, Abhandlungen
aus dem Mathematischen Seminar der Universität Hamburg 12(1)
(1937), 256-264.
DOI: https://doi.org/10.1007/BF02948947
[11] E. Witt, Ãœber steinersche systeme, Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg 12(1) (1937),
265-275.
DOI: https://doi.org/10.1007/BF02948948