[1] H. Weyl, A remark on the coupling of gravitation and electron,
Physical Review 77(5) (1950), 699-701.
DOI: https://doi.org/10.1103/PhysRev.77.699
[2] W. Heisenberg, Doubts and hopes in quantum electrodynamics,
Physica 19(1-12) (1953), 897-908.
DOI: https://doi.org/10.1016/S0031-8914(53)80100-X
[3] R. Finkelstein, R. LeLevier and M. Ruderman, Nonlinear spinor
fields, Physical Review 83(2) (1951), 326-332.
DOI: https://doi.org/10.1103/PhysRev.83.326
[4] M. Soler, Classical, stable, nonlinear spinor field with positive
rest energy, Physical Review D 1(10) (1970), 2766-2767.
DOI: https://doi.org/10.1103/PhysRevD.1.2766
[5] K. Johnson, A field theory Lagrangian for the MIT bag model,
Physics Letters B 78(2-3) (1978), 259-262.
DOI: https://doi.org/10.1016/0370-2693(78)90018-7
[6] P. Mathieu and R. Saly, Baglike solutions of a Dirac equation with
fractional nonlinearity, Physical Review D 29(12) (1984),
2879-2883.
DOI: https://doi.org/10.1103/PhysRevD.29.2879
[7] A. F. Ranada, Classical Nonlinear Dirac Field Models of Extended
Particles, In: Quantum Theory, Groups, Fields and Particles, Edited by
A. O. Barut, Amsterdam, Reidel, 1983.
[8] Y. Q. Gu, Some properties of the spinor soliton, Advances in
Applied Clifford Algebras 8(1) (1998), 17-29.
DOI: https://doi.org/10.1007/BF03041923
[9] Y. Q. Gu, Characteristic functions and typical values of the
nonlinear dark spinor, arXiv:hep-th/0611210.
[10] Y. Q. Gu, Clifford algebra, Lorentz transformation and unified
field theory, Advances in Applied Clifford Algebras 28(2) (2018);
Article 37.
DOI: https://doi.org/10.1007/s00006-018-0852-0
[11] W. Fushchych and R. Zhdanov, Symmetries and Exact Solutions of
Nonlinear Dirac Equations, Kyiv Mathematical Ukraina Publisher,
Ukraine (1997); arXiv: math-ph/0609052.
[12] M. Wakano, Intensely localized solutions of the classical
Dirac-Maxwell field equations, Progress of Theoretical Physics 35(6)
(1966), 1117-1141.
DOI: https://doi.org/10.1143/PTP.35.1117
[13] Y. Q. Gu, Spinor soliton with electromagnetic field, Advances in
Applied Clifford Algebras 8(2) (1998), 271-282.
DOI: https://doi.org/10.1007/BF03043099
[14] Y. Q. Gu, The electromagnetic potential among nonrelativistic
electrons, Advances in Applied Clifford Algebras 9(1) (1999),
55-60.
DOI: https://doi.org/10.1007/BF03041937
[15] Y. Q. Gu, New approach to N-body relativistic quantum
mechanics, International Journal of Modern Physics A 22(11) (2007),
2007-2019.
DOI: https://doi.org/10.1142/S0217751X07036233
[16] W. Greiner, Relativistic Quantum Mechanics: Wave Equations,
Springer-Verlag Berlin Heidelberg, 1990.
DOI: https://doi.org/10.1007/978-3-662-04275-5
[17] G. V. Shishkin and V. M. Villalba, Electrically neutral Dirac
particles in the presence of external fields: Exact solutions, Journal
of Mathematical Physics 34(11) (1993), 5037-5049.
DOI: https://doi.org/10.1063/1.530340
[18] V. G. Bagrov, M. C. Baldiotti, D. M. Gitman and I. V. Shirokov,
New solutions of relativistic wave equations in magnetic fields and
longitudinal fields, Journal of Mathematical Physics 43(5) (2002),
2284-2305.
DOI: https://doi.org/10.1063/1.1461428
[19] V. M. Villalba, The angular momentum operator in the Dirac
equation, European Journal of Physics 15(4) (1994), 191-196.
DOI: https://doi.org/10.1088/0143-0807/15/4/006
[20] M. A. RodrÃguez and P. Winternitz, Quantum superintegrability
and exact solvability in n dimensions, Journal of Mathematical Physics
43(3) (2002), 1309-1322.
DOI: https://doi.org/10.1063/1.1435077
[21] S. H. Dong, The Dirac equation with a Coulomb potential in D
dimensions, Journal of Physics A: Mathematical and General 36(18)
(2003), 1-10.
DOI: https://doi.org/10.1088/0305-4470/36/18/303
[22] X. Y. Gu, Z. Q. Ma and S. H. Dong, Exact solutions to the Dirac
equation for a Coulomb potential in dimensions, International Journal of Modern
Physics E 11(4) (2002), 335-346.
DOI: https://doi.org/10.1142/S0218301302000879
[23] X. Y. Gu, Z. Q. Ma and S. H. Dong, The Levinson theorem for the
Dirac equation in dimensions, Physical Review A 67(6) (2003),
062715.
DOI: https://doi.org/10.1103/PhysRevA.67.062715
[24] S. H. Dong, The Klein-Gordon equation with a Coulomb plus scalar
potential in D dimensions, International Journal of Modern Physics E
13(3) (2004), 597-610.
DOI: https://doi.org/10.1142/S0218301304002338
[25] E. G. Kalnins, W. Miller Jr. and G. S. Pogosyan, The
Coulomb-oscillator relation on n-dimensional spheres and
hyperboloids, Physics of Atomic Nuclei 65(6) (2002), 1086-1094.
DOI: https://doi.org/10.1134/1.1490116
[26] E. G. Kalnins, W. Miller Jr. and G. S. Pogosyan, Exact and
quasi-exact solvability of two-dimensional superintegrable quantum
systems: I, Euclidean Space, arXiv:math-ph/0412035.
[27] P. Winternitz and I. Yurdusen, Integrable and superintegrable
systems with spin, Journal of Mathematical Physics 47(10) (2006);
Article 103509.
DOI: https://doi.org/10.1063/1.2360042
[28] S. H. Dong and J. GarcÃa-Ravelo, Exact solutions of the
s-wave Schrödinger equation with Manning-Rosen potential,
Physica Scripta 75(3) (2007), 307-309.
DOI: https://doi.org/10.1088/0031-8949/75/3/013
[29] A. D. Alhaidari, Systematic and intuitive approach for separation
of variables in the Dirac equation for a class of noncentral
electromagnetic potentials, Annals of Physics 320(2) (2005), 453-467.
DOI: https://doi.org/10.1016/j.aop.2005.07.001
[30] T. Cazenave and L. Vazquez, Existence of localized solutions for
a classical nonlinear Dirac field, Communications in Mathematical
Physics 105(1) (1986), 35-47.
DOI: https://doi.org/10.1007/BF01212340
[31] F. Merle, Existence of stationary states for nonlinear Dirac
equations, Journal of Differential Equations 74(1) (1988), 50-68.
DOI: https://doi.org/10.1016/0022-0396(88)90018-6
[32] Mikhael Balabane, Thierry Cazenave, Adrien Douady and Frank
Merle, Existence of excited states for a nonlinear Dirac field,
Communications in Mathematical Physics 119(1) (1988), 153-176.
DOI: https://doi.org/10.1007/BF01218265
[33] M. Balabane, Thierry Cazenave and Luis Vázquez, Existence of
standing waves for Dirac fields with singular nonlinearities,
Communications in Mathematical Physics 133(1) (1990), 53-74.
DOI: https://doi.org/10.1007/BF02096554
[34] M. J. Esteban and E. Sere, Existence of stationary solutions for
the nonlinear Dirac equation and the Dirac-Poisson system, Comptes
Rendus de l’Académie des Sciences: Série 1,
Mathématiquet 319(11) (1994), 1213-1218.
[35] M. J. Esteban and E. Sere, Stationary states of the nonlinear
Dirac equation: A variational approach, Communications in Mathematical
Physics 171(2) (1995), 323-350.
DOI: https://doi.org/10.1007/BF02099273
[36] Y. N. Ding and J. C. Wei, Stationary states of nonlinear Dirac
equations with general potentials, Reviews in Mathematical Physics
20(8) (2008), 1007-1032.
DOI: https://doi.org/10.1142/S0129055X0800350X
[37] Y. Q. Gu, Space-time geometry and some applications of Clifford
algebra in physics, Advances in Applied Clifford Algebras 28(4)
(2018); Article 79.
DOI: https://doi.org/10.1007/s00006-018-0896-1
[38] Y. Q. Gu, The simplification of spinor connection and classical
approximation, arXiv:gr-qc/0610001.
[39] Y. Q. Gu, Natural coordinate system in curved space-time, Journal
of Geometry and Symmetry in Physics 47 (2018), 51-62.