[1] J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisoněk,
Combinatorial aspects of multiple zeta values, Electron. J. Combin.
5(1) (1998).
[2] D. Bowman and D. M. Bradley, The algebra and combinatorics of
shuffles and multiple zeta values, J. Combin. Theory Ser. A 97 (2002),
43-61.
[3] L. Euler, Remarques sur un beau rapport entre les series des
puissances tant directes que reciproques, Memoires de
l’academie des sciences de Berlin 17 (1768), 83-106.
[4] M. Hoffman, Multiple harmonic series, Pacific J. Math. 152(2)
(1992), 275-290.
[5] M. Hoffman, The algebra of multiple harmonic series, J. Algebra
194(2) (1997), 477-495.
[6] K. Ihara, J. Kajikawa, Y. Ohno and J. Okuda, Multiple zeta values
vs. Multiple zeta-star values, preprint.
[7] K. Imatomi, T. Tanaka, K. Tasaka and N. Wakabayashi, On some
combinations of multiple zeta-star values, arXiv: 0912.1951.
[8] H. Kondo, S. Saito and T. Tanaka, Bowman-Bradley theorem for
multiple zeta-star values, arXiv: 1003.5973.
[9] M. Kontsevich and D. Zagier, Periods, Mathematics Unlimited-2001
and Beyond, 771-808, Springer, Berlin, 2001.
[10] S. Muneta, On some explicit evaluations of multiple zeta-star
values, J. Number Theory 128(9) (2008), 2538-2548.
[11] S. Muneta, A note on evaluations of multiple zeta values, Proc.
Amer. Math. Soc. 137(3) (2009), 931-935.
[12] Y. Yamasaki, Evaluations of multiple Dirichlet L-values
via symmetric functions, J. Number Theory 129(10) (2009),
2369-2386.
[13] S. A. Zlobin, Generating functions for the values of a multiple
zeta function, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 73(2) (2005),
55-59; Translation in Moscow Univ. Math. Bull. 60(2) (2005), 44-48.