References

ON (DE)HOMOGENIZED GRÖBNER BASES


[1] T. Becker and V. Weispfenning, Gröbner Bases, Springer-Verlag, 1993.

[2] B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, Multidimensional Systems Theory (N. K. Bose, ed.), Reidel Dordrecht, (1985), 184-232.

[3] E. L. Green, Non-commutative Gröbner bases and projective resolutions, Proceedings of the Euroconference Computational Methods for Representations of Groups and Algebras, Essen, 1997, (Michler, Schneider, eds), Progress in Mathematics, Vol. 173, Basel, Birkhauser, Verlag, (1999), 29-60.

[4] D. Hartley and P. Tuckey, Gröbner bases in Clifford and Grassmann algebras, J. Symb. Comput. 20 (1995), 197-205.

[5] A. Kandri-Rody and V. Weispfenning, Non-commutative Gröbner bases in algebras of solvable type, J. Symb. Comput. 9 (1990), 1-26.

[6] H. Li and F. Van Oystaeyen, Zariskian Filtrations, K-Monographs in Mathematics, Vol. 2, Kluwer Academic Publishers, 1996.

[7] H. Li, Y. Wu and J. Zhang, Two applications of non-commutative Gröbner bases, Ann. Univ. Ferrara - Sez. VII - Sc. Mat. 45 (1999), 1-24.

[8] H. Li and F. Van Oystaeyen, A Primer of Algebraic Geometry, Marcel Dekker, Inc., New York, Basel, 2000.

[9] H. Li, Non-commutative Gröbner Bases and Filtered-Graded Transfer, LNM, 1795, Springer-Verlag, 2002.

[10] H. Li, leading homogeneous algebras and Gröbner bases, Advanced Lectures in Mathematics, International Press and Higher Education Press, Boston-Beijing, 8 (2009), 155-200.

[11] H. Li, On the calculation of and by using Gröbner bases, Algebra Colloquium 16(2) (2009), 181-194.

[12] T. Mora, An introduction to commutative and non-commutative Gröbner bases, Theoretic Computer Science 134 (1994), 131-173.

[13] P. Nordbeck, On some basic applications of Gröbner bases in non-commutative polynomial rings, Gröbner Bases and Applications, Vol. 251 of LMS Lecture Note Series, Cambridge Univ. Press, Cambridge, (1998), 463-472.