[1] J. Berman, P. Idziak, P. Markovic, R. McKenzie, M. Valeriote and
R. Willard, Varieties with few subalgebras of powers, Transactions of
the American Mathematical Society 362(3) (2010), 1445-1473.
DOI: https://doi.org/10.1090/S0002-9947-09-04874-0
[2] A. A. Bulatov and V. Dalmau, Towards a dichotomy theorem for the
counting constraint satisfaction problem, Information and Computation
205(5) (2007), 651-678.
DOI: https://doi.org/10.1016/j.ic.2006.09.005
[3] A. Chicco, On the primeness of locally finite idempotent
3-permutability, Algebra Universalis 80(2) (2019); Article 18.
DOI: https://doi.org/10.1007/s00012-019-0594-4
[4] A. Chicco, Prime Maltsev Conditions and Congruence
n-Permutability, PhD. Thesis, McMaster University, Ontario,
Canada, 2018.
[5] O. C. Garcia and W. Taylor, The lattice of interpretability types
of varieties, Memoirs of the American Mathematical Society, American
Mathematical Society Series 50(305) (1984).
DOI: http://dx.doi.org/10.1090/memo/0305
[6] J. Hagemann and A. Mitschke, On n-permutable congruences, Algebra
Universalis 3(1) (1973); Article 8.
DOI: https://doi.org/10.1007/BF02945100
[7] D. Hobby and R. McKenzie, The Structure of Finite Algebras,
Contemporary Mathematics, American Mathematical Society, 1988.
[8] K. A. Kearnes and A. Szendrei, Cube term blockers without
finiteness, Algebra Universalis 78(4) (2017), 437-459.
DOI: https://doi.org/10.1007/s00012-017-0476-6
[9] K. A. Kearnes and S. T. Tschantz, Automorphism groups of squares
and of free algebras, International Journal of Algebra and Computation
17(3) (2007), 461-505.
DOI: https://doi.org/10.1142/S0218196707003615
[10] K. A. Kearnes, Congruence permutable and congruence 3-permutable
locally finite varieties, Journal of Algebra 156(1) (1993), 36-49.
DOI: https://doi.org/10.1006/jabr.1993.1061
[11] M. Kozik, A. Krokhin, M. Valeriote and R. Willard,
Characterizations of several Maltsev conditions, Algebra Universalis
73(3-4) (2015), 205-224.
DOI: https://doi.org/10.1007/s00012-015-0327-2
[12] A. I. Maltsev, On the general theory of algebraic systems,
Matematicheskii Sbornik 77(1) (1954), 3-20.
[13] R. McKenzie, G. McNulty and W. Taylor, Algebras, Lattices,
Varieties, Volume 1, Wadsworth and Brooks, Cole, 1987.
[14] W. D. Neumann, On Malcev conditions, Journal of the Australian
Mathematical Society 17(3) (1974), 376-384.
DOI: DOI: https://doi.org/10.1017/S1446788700017122
[15] J. Oprsal, Taylor’s modularity conjecture and related
problems for idempotent varieties, Order 35(3) (2018), 433-460.
DOI: https://doi.org/10.1007/s11083-017-9441-4
[16] E. T. Schmidt, Kongruenzrelationen Algebraischer Strukturen,
Mathematische Forschungsberichte 25 (1969).
[17] J. W. Snow, Maltsev conditions and relations on algebras, Algebra
Universalis 42(4) (1999), 299-309.
DOI: https://doi.org/10.1007/s000120050005
[18] W. Taylor, Characterizing Mal’cev conditions, Algebra
Universalis 3(1) (1973); Article 351.
DOI: https://doi.org/10.1007/BF02945141
[19] W. Taylor, The fine spectrum of a variety, Algebra Universalis
5(1) (1975), 263-303.
DOI: https://doi.org/10.1007/BF02485261
[20] S. Tschantz, Congruence Permutability is Join Prime, Unpublished,
pages 1-70, 1996.
[21] M. Valeriote and R. Willard, Idempotent n-permutable
varieties, Bulletin of the London Mathematical Society 46(4) (2014),
870-880.
DOI: https://doi.org/10.1112/blms/bdu044