References

COMBINATORIAL RESULTS FOR CERTAIN SEMIGROUPS OF ORDER-DECREASING PARTIAL ISOMETRIES OF A FINITE CHAIN


[1] F. Al-Kharousi, R. Kehinde and A. Umar, On the semigroup of partial isometries of a finite chain, Comm. Algebra 44(2) (2016), 639-647.
DOI: https://doi.org/10.1080/00927872.2014.984838

[2] F. Al-Kharousi, R. Kehinde and A. Umar, Combinatorial results for certain semigroups of partial isometries of a finite chain, Australas. J. Combin. 58(3) (2014), 365-375.

[3] D. Borwein, S. Rankin and L. Renner, Enumeration of injective partial transformations, Discrete Math. 73(3) (1989), 291-296.
DOI: https://doi.org/10.1016/0012-365X(89)90272-0

[4] L. Bracci and L. E. Picasso, Representations of semigroups of partial isometries, Bull. Lond. Math. Soc. 39(5) (2007), 792-802.
DOI: https://doi.org/10.1112/blms/bdm059

[5] V. H. Fernandes, The monoid of all injective orientation preserving partial transformations on a finite chain, Comm. Algebra 28(7) (2000), 3401-3426.
DOI: https://doi.org/10.1080/00927870008827033

[6] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, The cardinal and the idempotent number of various monoids of transformations on a finite chain, Bull. Malays. Math. Sci. Soc. 34(1) (2011), 79-85.

[7] J. B. Fountain, Adequate semigroups, Proc. Edinburgh Math. Soc. 22(2) (1979), 113-125.
DOI: https://doi.org/10.1017/S0013091500016230

[8] J. B. Fountain, Abundant semigroups, Proc. London Math. Soc. 44(1) (1982), 103-129.
DOI: https://doi.org/10.1112/plms/s3-44.1.103

[9] O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups: An Introduction, Springer-Verlag, London, 2009.

[10] G. U. Garba, Nilpotents in semigroups of partial one-to-one order-preserving mappings, Semigroup Forum 48(1) (1994), 37-49.
DOI: https://doi.org/10.1007/BF02573652

[11] V. Gould, Graph expansions of right cancellative monoids, Internat. J. Algebra Comput. 6(6) (1996), 713-733.
DOI: https://doi.org/10.1142/S0218196796000404

[12] J. M. Howie, Fundamentals of Semigroup Theory, London Mathematical Society Monographs, New Series 12, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.

[13] R. Kehinde, S. O. Makanjuola and A. Umar, On the semigroup of order-decreasing partial isometries of a finite chain (Submitted).

[14] A. Laradji and A. Umar, Combinatorial results for the symmetric inverse semigroup, Semigroup Forum 75(1) (2007), 221-236.
DOI: https://doi.org/10.1007/s00233-007-0732-8

[15] M. V. Lawson, Inverse semigroups, The theory of partial symmetries, World Scientific Publishing Co., Inc., River Edge, NJ, 1998.

[16] S. Lipscomb, Symmetric Inverse Semigroups, Mathematical Surveys and Mono-graphs, 46, Amer. Math. Soc., Providence, R.I., 1996.

[17] J. Riordan, Combinatorial Identities, John Wiley and Sons, New York, 1968.

[18] N. J. A. Sloane, (Edition), The On-Line Encyclopedia of Integer Sequences, 2011.
Available at http://oeis.org/

[19] A. Umar, On the semigroups of partial one-to-one order-decreasing finite transformations, Proc. Roy. Soc. Edinburgh Sect. A: Math. 123(2) (1993), 355-363.
DOI: https://doi.org/10.1017/S0308210500025737

[20] A. Umar, Some combinatorial problems in the theory of symmetric inverse semigroups, Algebra Discrete Math. 9(2) (2010), 115-126.

[21] Lawrence J. Wallen, Semigroups of partial isometries, Bull. Amer. Math. Soc. 75(4) (1969), 763-764.
DOI: https://doi.org/10.1090/S0002-9904-1969-12278-0