References

TWO ELEMENTARY FORMULAE AND SOME COMPLICATED PROPERTIES FOR MERTENS FUNCTION


[1] M. Benito and J. L. Varona, Recursive formulae related to the summation of the Möbius function, The Open Mathematics Journal 1 (2008), 25-34.

[2] F. Dress, Fonction sommatiore de la fonction de Möbius. I, Majorations expérimentales, Experiment. Math. 2 (1993), 89-98.

[3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Sixth Edition), Oxford University Press, 2008.

[4] G. Hurst, Computations of the Mertens function and improved bounds on the Mertens conjecture, arXiv:1610.08551, 2016.

[5] T. Kotnik and J. Van de Lune, On the order of the Mertens function, Experimental Mathematics 13(4) (2004), 473-481.

[6] E. Kuznetsov, Computing the Mertens function on a GPU, arXiv:1108.0135, 2011.

[7] G. Neubauer, Eine Empirische Untersuchung zur Mertensschen Funktion, Numer. Math. 5 (1963), 1-13.

[8] O. Ramaré, From explicit estimates for primes to explicit estimates for the Möbius function, Acta Arithmetica 157 (2013), 365-379.

[9] A. Tan, Hilbert-Huang Transform, 2016.
http://cn.mathworks.com/matlabcentral/fileexchange/19681-hilbert-huang -transform

[10] R. Q. Wei, A recursive relation and some statistical properties for the Möbius function, International Journal of Mathematics and Computer Science 11(2) (2016), 215-248.