References

MEET-REDUCIBLE SUBMAXIMAL CLONES DETERMINED BY NONTRIVIAL EQUIVALENCE RELATIONS


[1] K. A. Baker and A. F. Pixley, Polynomial interPolation and the Chinese remainder theorem for algebraic systems, Math. Z. 143 (1975), 165-174.

[2] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, 1981.

[3] K. Denecke and W. L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman & Hall / CRC, 2002.

[4] A. Grecianu, Clones sous-maximaux inf-réductibles. Mémoire numérisé par la Division de la gestion de documents et des archives de l\\\\\\\'Université de Montréal, 2009.

http://hdl.handle.net/1866/7887

[5] S. V. Jablonskij, Functional constructions in many-valued logics, Tr. Mat. Inst. Steklova 51 (1958), 5-142 (in Russian).

[6] B. Larose, Maximal subclones of the clone of isotone operations on a bounded finite order, C. R. Acad. Sci. Paris 314 (1992), 245-247.

[7] D. Lau, Function Algebras on Finite Sets, Springer, 2006.

[8] M. Pinsker, Rosenberg’s Characterization of Maximal Clones, Diploma Thesis, Vienna Univ. of Technology, 2002.

[9] R. Poeschel, Concrete representation of algebriac structure and a general Galois theory, Contribution to General Algebra, (Proc. Klagenfurt Conf., Klagenfurt, 1978), Verlag J. Heyn, Klagenfurt, 1 (1979), 249-272.

[10] M. Ponjanie, On Traces of Maximal Clones, Master Thesis, Univ. of Novi Sad, 2003.

[11] E. L. Post, Introduction to a general theory of elementary propositions, Amer. J. Math. 43 (1921), 163-185.

[12] E. L. Post, The Two-valued Iterative Systems of Mathematical Logic, Ann. Math. Studies, Vol. 5, Princeton University Press, 1941.

[13] R. W. Quackenbush, A new proof of Rosenberg’s primal algebra characterization theorem. In: Finite algebra and multiple valued logic (Szeged, 1979), Colloq. Math. Soc. J. Bolyai, North Holland, Amsterdam 28 (1981), 603-634.

[14] I. G. Rosenberg, La structure des fonctions de plusieurs variables sur un ensemble fini, C. R. Acad. Sci. Paris, Ser. A-B, 260 (1965), 3817-3819.

[15] I. G. Rosenberg, Functional completeness in many-valued logics; the structure of functions of several variables on finite sets, Rozpravy, Československ Akad. Věd Řada Mat. Přírod. Věd 80 (1970), 3-93 (in German)

[16] I. G. Rosenberg, ber die functionals Vollständigkeit in dem mehrwertigen Logiken, Rozpravy Ceskoslovenké Akad. ved. Ser. Math. Nat. Sci. 80 (1970), 3-93.

[17] I. G. Rosenberg and A. Szendrei, Submaximal clones with a prime order automorphism, Acta Sci. Math. 49 (1985), 29-48.

[18] E. R. A. Temgoua and I. G. Rosenberg, Binary central relations and submaximal clones determined by nontrivial equivalence relations, Algebra Universalis, Springer Basel AG, 67 (2012), 299-311.

[19] E. R. A. Temgoua, Meet-irreducible submaximal clones determined by nontrivial equivalence relations, Algebra Universalis 70 (2013), 175-196.