[1] L. Avramov, Complete intersections and symmetric algebras, J. Alg.
bf 73 (1981), 248-263.
[2] W. Bruns and A. Guerrieri, The Dedkind Mertens lemma and
Determinaltal rings, Proc. AMS 127 (1999), 657-663.
[3] W. Bruns and J. Gubeladze, Divisorial linear algebra of normal
semigroup rings, Algebra and Representation Theory 6 (2003),
139-168.
[4] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in
Advanced Mathematics 39 (1993).
[5] I. Gitler, E. Reyes and R. Villareal, Blow up algebras of ideals
of vertex covers of bipartite graph, Comtemp. Math. 376 (2005),
273-279.
[6] S. Goto and K. Watanabe, On graded rings, J. Math. Soc. Japan 30
(1978), 172-213.
[7] S. Goto and K. Watanabe, On graded rings, II, Tokyo J. Math. 1
(1978), 237-261.
[8] M. Herrmann, E. Hyry and J. Ribbe, On the Cohen-Macaulay and
Gorenstein properties of multi-graded Rees algebras, Manuscripta Math.
79 (1993), 343-377.
[9] M. Herrmann, E. Hyry and J. Ribbe, On multi-Rees algebras, Math.
Ann. 300 (1995), 249-279.
[10] J. Herzog, T. Hibi and N. V. Trung, Symbolic powers of monomial
ideals and vertex cover algebras, Adv. in Math. 210 (2007),
304-322.
[11] M. Hochoster, Rings of invariants of tri, Cohen-Macaulay rings
generated by monomials, and polytopes, Ann. of Math. 96 (1972),
318-337.
[12] C. Huneke, The theory of d-sequences and powers of ideals, Adv.
in Math. 46 (1982), 249-279.
[13] E. Hyry, The diagonal subring and the Cohen-Macaulay property of
a multigraded ring, Trans. Amer. Math. Soc. 351(6) (1999),
2213-2232.
[14] S. Iai, Gorenstein Rees algebras over rings with finite local
cohomology, Preprint (2009).
[15] M. Ishida, Torus embeddings and dualizing complexes, Tohoku Math.
J. 32 (1980), 111-146.
[16] Y. Kamoi, Noetherian rings graded by an Abelian group, Tokyo J.
Math. 18(1) (1995), 31-48.
[17] T. Korb and Y. Nakamura, On the Cohen-Macaulayness of multi-Rees
algebras and Rees algebras of powers of ideals, J. Math. Soc. Japan
50(2) (1998), 451-467.
[18] O. Lavila-Vidal and S. Zarzuela, On the Gorenstein property of
the diagonals of the Rees algebra, Collect. Math. 49 (1998),
383-397.
[19] A. Ooishi, On the Gorenstein property of the associated graded
ring and the Rees algebra of an ideal, J. Alg. 115 (1993), 397-414.
[20] P. Schenzel, Standard system of parameters and their blow-up
rings, J. Reine Angew. Math. 344 (1983), 201-220.
[21] A. Simis, N. V. Trung and W. Vasconcelos, The diagonal subalgebra
of a blow-up algebra, J. Pure and Appl. Alg. 125 (1998), 305-328.
[22] R. Stanley, Hilbert functions of graded algebras, Adv. in Math.
28 (1978), 57-83.