References

ON GORENSTEIN DIAGONAL SUBALGEBRAS


[1] L. Avramov, Complete intersections and symmetric algebras, J. Alg. bf 73 (1981), 248-263.

[2] W. Bruns and A. Guerrieri, The Dedkind Mertens lemma and Determinaltal rings, Proc. AMS 127 (1999), 657-663.

[3] W. Bruns and J. Gubeladze, Divisorial linear algebra of normal semigroup rings, Algebra and Representation Theory 6 (2003), 139-168.

[4] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics 39 (1993).

[5] I. Gitler, E. Reyes and R. Villareal, Blow up algebras of ideals of vertex covers of bipartite graph, Comtemp. Math. 376 (2005), 273-279.

[6] S. Goto and K. Watanabe, On graded rings, J. Math. Soc. Japan 30 (1978), 172-213.

[7] S. Goto and K. Watanabe, On graded rings, II, Tokyo J. Math. 1 (1978), 237-261.

[8] M. Herrmann, E. Hyry and J. Ribbe, On the Cohen-Macaulay and Gorenstein properties of multi-graded Rees algebras, Manuscripta Math. 79 (1993), 343-377.

[9] M. Herrmann, E. Hyry and J. Ribbe, On multi-Rees algebras, Math. Ann. 300 (1995), 249-279.

[10] J. Herzog, T. Hibi and N. V. Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. in Math. 210 (2007), 304-322.

[11] M. Hochoster, Rings of invariants of tri, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (1972), 318-337.

[12] C. Huneke, The theory of d-sequences and powers of ideals, Adv. in Math. 46 (1982), 249-279.

[13] E. Hyry, The diagonal subring and the Cohen-Macaulay property of a multigraded ring, Trans. Amer. Math. Soc. 351(6) (1999), 2213-2232.

[14] S. Iai, Gorenstein Rees algebras over rings with finite local cohomology, Preprint (2009).

[15] M. Ishida, Torus embeddings and dualizing complexes, Tohoku Math. J. 32 (1980), 111-146.

[16] Y. Kamoi, Noetherian rings graded by an Abelian group, Tokyo J. Math. 18(1) (1995), 31-48.

[17] T. Korb and Y. Nakamura, On the Cohen-Macaulayness of multi-Rees algebras and Rees algebras of powers of ideals, J. Math. Soc. Japan 50(2) (1998), 451-467.

[18] O. Lavila-Vidal and S. Zarzuela, On the Gorenstein property of the diagonals of the Rees algebra, Collect. Math. 49 (1998), 383-397.

[19] A. Ooishi, On the Gorenstein property of the associated graded ring and the Rees algebra of an ideal, J. Alg. 115 (1993), 397-414.

[20] P. Schenzel, Standard system of parameters and their blow-up rings, J. Reine Angew. Math. 344 (1983), 201-220.

[21] A. Simis, N. V. Trung and W. Vasconcelos, The diagonal subalgebra of a blow-up algebra, J. Pure and Appl. Alg. 125 (1998), 305-328.

[22] R. Stanley, Hilbert functions of graded algebras, Adv. in Math. 28 (1978), 57-83.