[1] D. H. Bailey, J. M. Borwein, A. Mattingly and G. Wightwick, The
computation of previously inaccessible digits of and Catalan’s constant, Notices
AMS 60(7) (2013), 844-854.
[2] E. T. Bell, The numbers of representations of integers in certain
forms Amer. Math. Monthly 31(3) (1924),
126-131.
[3] J. Choi and D. Cvijovic, Values of the polygamma functions at
rational arguments, J. Phys. A: Math. Theor. 40 (2007),
15019-15028.
[4] J. Choi and D. Cvijovic, Corrigendum, Values of the polygamma
functions at rational arguments, J. Phys. A: Math. Theor. 43 (2010),
239801.
[5] S. Cooper and M. D. Hirschhorn, On the number of primitive
representations of integers as sums of squares, Ramanujan Journal 13
(2007), 7-25.
[6] S. Cooper and H. Y. Lam, On the Diophantine equation Journal of Number Theory 133 (2013),
719-737.
[7] L. E. Dickson, History of the Theory of Numbers, Vol. II, Carnegie
Institute of Washington, Washington, Reprint: Chelsea, 1966, New York,
1920.
[8] L. E. Dickson, Introduction to the Theory of Numbers, University
of Chicago Press, Reprint (1957), Dover Publications, 1929.
[9] E. Grosswald, Representations of Integers as Sums of Squares,
Springer, New York, 1985.
[10] X. Guo, Y. Peng and H. Qin, On the representation numbers of
ternary quadratic forms and modular forms of weight 3/2, Journal of
Number Theory 140 (2014), 235-266.
[11] W. Hürlimann, Exact and asymptotic evaluation of the number of
distinct primitive cuboids, Journal of Integer Sequences 18(2),
Article 15.2.5. (2015a).
[12] W. Hürlimann, On the number of primitive Pythagorean
quintuples, Journal of Algebra, Number Theory: Advances and
Applications 13(1) (2015b), 13-28.
[13] W. Hürlimann, Bell’s ternary quadratic forms and
Tunnel’s congruent number criterion revisited, Advances in Pure
Mathematics 5(5) (2015c), 267-277.
[14] W. Hürlimann, Cooper and Lam’s conjecture for
generalized Bell ternary quadratic forms, Journal of Number Theory 158
(2016a), 23-32.
[15] W. Hürlimann, On the number of primitive Pythagorean
sextuples, Submitted for publication (2016b).
[16] A. Hurwitz, Somme de trois carrés, L’Intermédiaire
des Mathématiciens 14 (1907), 106-107. (Mathematische Werke (1933),
Vol. 2, 751).
[17] J. Kaczorowski, On a generalization of the Euler totient
function, Monatsh. Math. 170 (2013), 27-48.
[18] J. Kaczorowski and K. Wiertelak, On the sum of the twisted Euler
function, Int. J. Number Theory 8(7) (2013), 1741-1761.
[19] J. Kaczorowski and K. Wiertelak, Omega theorems related to the
general Euler totient function, J. Math. Anal. Appl. 412 (2014),
401-415.
[20] K. Kim and B.-K. Oh, The number of representations of squares by
integral ternary quadratic forms, (2015).
URL: http://arxiv.org/abs/1509.09111.
[21] D. N. Lehmer, Asymptotic evaluation of certain totient sums,
Amer. J. Math. 22(4) (1900), 293-335.
[22] Z. H. Sun and K. S. Williams, On the number of representations of
n by Acta Arithmetica 122(2) (2006),
101-171.
[23] Eric W. Weisstein, Dirichlet L-Series, From MathWorld - A Wolfram
Web Resource, (1999).
http://mathworld.wolfram.com/DirichletL-Series.html
.
[24] D. Ye, Representation of squares by certain ternary quadratic
forms, Integers 14 (2014), #A52.