References

CONSTACYCLIC CODES OF LENGTH OVER A FINITE FIELD


[1] G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl. 18(2) (2012), 362-377.

[2] T. Blackford, Negacyclic duadic codes, Finite Fields Appl. 14(4) (2008), 930-943.

[3] T. Blackford, Isodual constacyclic codes, Finite Fields Appl. 24 (2013), 29-44.

[4] Bocong Chen, Yun Fan, Liren Lin and Hongwei Liu, Constacyclic codes over finite fields, Finite Fields Appl. 18(6) (2012), 1217-1231.

[5] H. Q. Dinh, Repeated-root constacyclic codes of length Finite Fields Appl. 18(1) (2012), 133-143.

[6] H. Q. Dinh, Structure of repeated-root constacyclic codes of length and their duals, Discrete Mathematics 313 (2013), 983-991.

[7] H. Q. Dinh, On repeated-root constacyclic codes of length Asian-European J. Math. 06, 1350020 (2013), [25 pages].

[8] A. Sahni and P. T. Sehgal, Minimal cyclic codes of length Finite Fields Appl. 18 (2012), 1017-1036.

[9] A. Sahni and P. T. Sehgal, Enumeration of self dual and self orthogonal negacyclic codes over finite fields, Advances in Mathematics of Communications 9(4) (2015) 437-447.

[10] A. Sahni and P. T. Sehgal, Hermitian self-orthogonal constacyclic codes over finite fields, Journal of Discrete Mathematics 985387 (2014), [7 pages].