[1] R. Alfaro and G. Szeto, Skew group rings which are Azumaya, Comm.
in Algebra 23(6) (1995), 2255-2261.
[2] R. Alfaro and G. Szeto, On Galois extensions of an Azumaya
algebra, Comm. in Algebra 25(6) (1997), 1873-1882.
[3] F. R. DeMeyer, Some notes on the general Galois theory of rings,
Osaka J. Math. 2 (1965), 117-127.
[4] F. R. DeMeyer and E. Ingraham, Separable Algebras over Commutative
Rings, Volume 181, Springer Verlag, Berlin, Heidelberg, New York,
1971.
[5] S. Ikehata, Note on Azumaya algebras and H-separable
extensions, Math. J. Okayama Univ. 23 (1981), 17-18.
[6] T. Kanzaki, On Galois algebra over a commutative ring, Osaka J.
Math. 2 (1965), 309-317.
[7] T. Kanzaki, On Galois extension of rings, Nagoya J. Math. 27
(1966), 43-49.
[8] K. Sugano, On a special type of Galois extensions, Hokkaido J.
Math. 9 (1980), 123-128.
[9] G. Szeto and L. Xue, Skew group rings which are Galois,
International Journal of Mathematics and Mathematical Sciences 23(4)
(1999), 279-283.
[10] G. Szeto and L. Xue, On central commutator Galois extensions of
rings, International Journal of Mathematics and Mathematical Sciences
24(5) (2000), 289-294.
[11] G. Szeto and L. Xue, The structure of Galois algebras, Journal of
Algebra 237(1) (2001), 238-246.
[12] G. Szeto and L. Xue, On Galois algebras satisfying the
fundamental theorem, Communications in Algebra 35(12) (2007),
3979-3985.
[13] G. Szeto and L. Xue, On Galois extensions of a separable algebra,
International Mathematical Forum 3(14) (2008), 677-683.
[14] G. Szeto and L. Xue, On Galois extensions with a one-to-one
Galois map, International Journal of Algebra 5(17) (2011), 801-807.
[15] L. Xue, On Azumaya Galois extensions, Bull. Malays. Math. Sci.
Soc. (2) 35(2A) (2012), 583-589.
[16] L. Xue, On Galois correspondence of a general Azumaya Galois
extension, International Journal of Algebra and Statistics 1 (2012),
45-49.
[17] L. Xue, On Hirata-Azumaya Galois extensions, International
Mathematical Forum 8(23) (2013), 1103-1110.
[18] L. Xue, On compositions of a Galois extension of a separable
algebra, International Journal of Algebra 8(2) (2014), 67-73.