References

ARITHMETIC FUNCTION AND PRIMITIVE FOUR SQUARES
COUNTING FUNCTIONS


[1] O. Bordellès, The composition of the gcd and certain arithmetic functions, Journal of Integer Sequences 13(7) (2010), Article 10.7.1.

[2] S. Cooper and M. D. Hirschhorn, On the number of primitive representations of integers as sums of squares, Ramanujan Journal 13 (2007), 7-25.

[3] E. Grosswald, Representations of Integers as Sums of Squares, Springer, New York, 1985.

[4] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (5th Edition), Oxford University Press, 1979.

[5] W. Hürlimann, On the number of primitive Pythagorean quintuples, Journal of Algebra, Number Theory: Advances and Applications 13(1) (2015), 13-28.

[6] E. Krätzel, Zahlentheorie, Mathematik für Lehrer, Band 19. VEB Deutscher Verlag für Wissenschaften, Berlin, 1981.

[7] J. L. Lagrange, Démonstration d‘un théorème d’arithmétique. Nouveaux Mémoires de l’Acad, Royale des Sciences et Belles Lettres de Berlin (Oeuvres 3 (1770), 695-795).

[8] E. Landau, Ueber die Anzahl der Gitterpunkte in gewissen Bereichen, Göttinger Nachr. (1912), 687-771.

[9] W. Narkiewicz, Number Theory, World Scientific Publishing, Singapore, 1983.

[10] M. B. Nathanson, Additive Number Theory, The Classical Bases, Graduate Texts in Mathematics 164, Springer, New York, 1996.

[11] M. Overholt, A Course in Analytic Number Theory, Graduate Studies in Mathematics, Volume 160, American Mathematical Society, Providence, Rhode Island, 2014.

[12] E. Pérez Herrero, Recycling Hardy and Wright, Average Order of Dedekind psi Function, 2012.

URL: http://psychedelic-geometry.blogspot.com.es/2012/06 /recycling-hardy-wright.html

[13] S. Ramanujan, Irregular numbers, Journal Indian Math. Soc. 5 (1913), 105-106. Collected Papers, 20-21.

[14] W. Sierpinski, Sur un problème du calcul des fonctions asymptotiques, Prace Mat.-Fiz. 17, 77-118 (Polish), Oeuvres Choisies, Tome I, (1906), 73-108.

[15] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, (1964).

URL: https://oeis.org/

[16] A. Walfisz, Gitterpunkte in Mehrdimensionalen Kugeln, PWN (Polish Scientific Publishers), Warszawa, 1957.

[17] Eric W. Weisstein, Möbius function, From MathWorld – A Wolfram Web Resource (1999).

URL: http://mathworld.wolfram.com/MoebiusFunction.html