[1] O. Bordellès, The composition of the gcd and certain arithmetic
functions, Journal of Integer Sequences 13(7) (2010), Article
10.7.1.
[2] S. Cooper and M. D. Hirschhorn, On the number of primitive
representations of integers as sums of squares, Ramanujan Journal 13
(2007), 7-25.
[3] E. Grosswald, Representations of Integers as Sums of Squares,
Springer, New York, 1985.
[4] G. H. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers (5th Edition), Oxford University Press, 1979.
[5] W. Hürlimann, On the number of primitive Pythagorean
quintuples, Journal of Algebra, Number Theory: Advances and
Applications 13(1) (2015), 13-28.
[6] E. Krätzel, Zahlentheorie, Mathematik für Lehrer, Band 19.
VEB Deutscher Verlag für Wissenschaften, Berlin, 1981.
[7] J. L. Lagrange, Démonstration d‘un théorème
d’arithmétique. Nouveaux Mémoires de l’Acad,
Royale des Sciences et Belles Lettres de Berlin (Oeuvres 3 (1770),
695-795).
[8] E. Landau, Ueber die Anzahl der Gitterpunkte in gewissen
Bereichen, Göttinger Nachr. (1912), 687-771.
[9] W. Narkiewicz, Number Theory, World Scientific Publishing,
Singapore, 1983.
[10] M. B. Nathanson, Additive Number Theory, The Classical Bases,
Graduate Texts in Mathematics 164, Springer, New York, 1996.
[11] M. Overholt, A Course in Analytic Number Theory, Graduate Studies
in Mathematics, Volume 160, American Mathematical Society, Providence,
Rhode Island, 2014.
[12] E. Pérez Herrero, Recycling Hardy and Wright, Average Order of
Dedekind psi Function, 2012.
URL: http://psychedelic-geometry.blogspot.com.es/2012/06
/recycling-hardy-wright.html
[13] S. Ramanujan, Irregular numbers, Journal Indian Math. Soc. 5
(1913), 105-106. Collected Papers, 20-21.
[14] W. Sierpinski, Sur un problème du calcul des fonctions
asymptotiques, Prace Mat.-Fiz. 17, 77-118 (Polish), Oeuvres Choisies,
Tome I, (1906), 73-108.
[15] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences,
(1964).
URL: https://oeis.org/
[16] A. Walfisz, Gitterpunkte in Mehrdimensionalen Kugeln, PWN (Polish
Scientific Publishers), Warszawa, 1957.
[17] Eric W. Weisstein, Möbius function, From MathWorld – A
Wolfram Web Resource (1999).
URL: http://mathworld.wolfram.com/MoebiusFunction.html
u>