[1] S. Akbari and A. Mohammadian, On zero-divisor graphs of finite
rings, J. Algebra 314 (2007), 168-184.
[2] L. J. S. Allen, Introduction to Mathematical Biology, Pearson
Prentice Hall, New Jersey, 2007.
[3] D. D. Anderson and M. Naseer, Beck’s coloring of a
commutative ring, J. Algebra 159 (1993), 500-514.
[4] D. F. Anderson and A. Badawi, On the zero-divisor graph of a ring,
Comm. Alg. 8 (2008), 3073-3092.
[5] D. F. Anderson, Lauve A. Frazier and A. P. Livingston, The
zero-divisor graph of a commutative ring, II. In: Ideal Theoretic
Methods in Commutative Algebra (Columbia, MO, 1999), Lecture Notes in
Pure and Appl. Math., 220, Dekker, New York, (2001), 61-72.
[6] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a
commutative ring, J. Algebra 217 (1999), 434-447.
[7] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988),
208-226.
[8] L. Birch, J. Thibodeaux and R. P. Tucci, Zero divisor graphs of
finite direct products of finite rings, Comm. Alg. 42 (2014), 1-9.
[9] I. I. Bozic and Z. Petrovic, Zero-divisor graphs of matrices over
commutative rings, Comm. Alg. 37 (2009), 1186-1192.
[10] G. Chartrand, L. Lesniak and P. Chang, Graphs and Digraphs, 5th
Edition, ARC Press, Boca Raton, FL, 2011.
[11] J. Coykendall, S. Sather-Wagstaff, L. Sheppardson and S. Spiroff,
On zero divisor graphs, Progress in Algebra 2 (2012), 241-299.
[12] L. DeMeyer, L. Greve, A. Sabbaghi and J. Wang, The zero-divisor
graph associated to a semigroup, Comm. Alg. 9 (2010), 3370-3391.
[13] D. Dolzan and P. Oblak, The zero-divisor graphs of rings and
semirings, Internat. J. Algebra Comput. 22(4) (2012), 1250033, 20
pp.
[14] J. D. Lagrange, On realizing zero-divisor graphs, Comm. Algebra
36 (2008), 4509-4520.
[15] A. Li and R. P. Tucci, Zero-divisor graphs of upper triangular
matrix rings, Comm. Algebra 41 (2013), 4622-4636.
[16] B. Li, Zero-divisor graph of triangular matrix rings over
commutative rings, International Journal of Algebra 5(6) (2011),
255-260.
[17] S. Redmond, The Zero-Divisor Graph of a Non-Commutative Ring, In:
Commutative Rings, Nova Sci. Publ., Hauppauge, NY, (2002), 39-47.
[18] S. Redmond, The zero-divisor graph of a non-commutative ring,
Int. J. of Comm. Rings 1(4) (2002), 203-221.
[19] S. Redmond, Recovering rings from zero-divisor graphs, J. Algebra
Appl. 12(8) (2013), 1350047.