[1] R. Balbes and Ph. Dwinger, Distributive Lattices, University of
Missouri Press, 1974.
[2] A. Borumand Saeid and S. Zahiri, Radicals in MTL-algebras, Fuzzy
Sets and Systems 236 (2014), 91-103.
[3] C. BuÅŸneag and D. Piciu, The stable topology for residuated
lattices, Soft Comput., Springer-Verlag 16 (2012), 1639-1655. DOI
10.1007/s00500-012-0849-x.
[4] C. C. Chang, A new proof of the completeness of the Lukasiewicz
axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80.
[5] C. C. Chang, Algebraic analysis of many valued logics, Trans.
Amer. Math. Soc. 88 (1958), 467-490.
[6] A. Di Nola, S. Sessa, F. Esteva, L. Godo and P. Garcia, The
variety generated by perfect BL-algebras: An algebraic approach in
fuzzy logic setting 73 (2012).
[7] R. P. Dilworth, Non-commutative residuated lattices, Trans. Amer.
Math. Soc. 46 (1939), 426-444.
[8] G. Georgescu and L. Leustean, Some classes of pseudo-BL algebras,
J. Aust. Math. Soc. 73 (2002), 127-153.
[9] P. HÃ jek, Basic fuzzy logic and BL-algebras, Soft Computing 2
(1998), 124-128.
[10] M. Haveshki and E. Eslami, “n-Fold filters in
BL-algebrasâ€, Mathematical Logic Quarterly 54(2) (2008),
176-186.
[11] A. Kadji, C. Lele, J. B. Nganou and M. Tonga, Folding theory
applied to residuated lattices, International Journal of Mathematics
and Mathematical Sciences, Volume 2014, Article ID 428940, 12 pages
http://dx.doi.org/10.1155/2014/428940
[12] N. Krishna, J. M. Aslam, C. S. Narayana and D. P. Priya, Tumor
Detection Using Fuzzy Logic And Gmrf. Proceedings of 18th
International Conference, 11th January 2015, Pune, India, ISBN:
978-93-84209-82-7.
[13] W. Krull, Axiomatische Begrndung der allgemeinen ideal theorie,
Sitzungsber. Physik. Med. Soc. Erlangen 56 (1924), 47-63.
[14] R. J. Marks-II, Fuzzy logic technology and applications, IEEE
Technical Activities Board, 1994.
[15] Z. M. Maa and B. Q. Hu, Characterizations and new subclasses of
I-filters in residuated lattices, Fuzzy Sets and Systems 247 (2014),
92-107.
[16] S. Motamed, L. Torkzadeh, A. B. Saeid and N. Mohtashamnia,
Radicals in BL-algebras, Math. Log. Quart. 57(2) (2011),
166 179. / DOI 10.1002/malq.201010003.
[17] J. Pavelka, On fuzzy logic II, Enriched residuated lattices and
semantics of propositional calculi, Z. Math. Log. Grundl. Math. 25
(1979), 119-134.
[18] E. Turunen, Boolean deductive systems of BL-algebras, Arch. Math.
Logic 40 (2001), 467-473.
[19] E. Turunen, BL-algebras and basic fuzzy logic, Mathware Soft
Comput. 6 (1999), 49-61.
[20] E. Turunen and S. Sessa, Locals BL-algebras, Multiple-Valued
Logic 6 (2001), 1-21.
[21] E. Turunen, N. Tchikapa and C. Lele, n-Fold implicative
basic logic is Godel logic, Soft Computing 16(1) (2012), 177-181
[22] E. Turunen, N. Tchikapa and C. Lele, Erratum to: n-Fold
implicative basic logic is Gödel logic, Soft Computing 16(1)
(2012), 183-183.
[23] M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer.
Math. Soc. 45 (1939), 335-354.
[24] M. Ward, Residuated distributive lattices, Duke Math. J. 6
(1940), 641-651.