References

SEMI-MAXIMAL FILTERS OF RESIDUATED LATTICES


[1] R. Balbes and Ph. Dwinger, Distributive Lattices, University of Missouri Press, 1974.

[2] A. Borumand Saeid and S. Zahiri, Radicals in MTL-algebras, Fuzzy Sets and Systems 236 (2014), 91-103.

[3] C. BuÅŸneag and D. Piciu, The stable topology for residuated lattices, Soft Comput., Springer-Verlag 16 (2012), 1639-1655. DOI 10.1007/s00500-012-0849-x.

[4] C. C. Chang, A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80.

[5] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.

[6] A. Di Nola, S. Sessa, F. Esteva, L. Godo and P. Garcia, The variety generated by perfect BL-algebras: An algebraic approach in fuzzy logic setting 73 (2012).

[7] R. P. Dilworth, Non-commutative residuated lattices, Trans. Amer. Math. Soc. 46 (1939), 426-444.

[8] G. Georgescu and L. Leustean, Some classes of pseudo-BL algebras, J. Aust. Math. Soc. 73 (2002), 127-153.

[9] P. Hàjek, Basic fuzzy logic and BL-algebras, Soft Computing 2 (1998), 124-128.

[10] M. Haveshki and E. Eslami, “n-Fold filters in BL-algebras”, Mathematical Logic Quarterly 54(2) (2008), 176-186.

[11] A. Kadji, C. Lele, J. B. Nganou and M. Tonga, Folding theory applied to residuated lattices, International Journal of Mathematics and Mathematical Sciences, Volume 2014, Article ID 428940, 12 pages http://dx.doi.org/10.1155/2014/428940

[12] N. Krishna, J. M. Aslam, C. S. Narayana and D. P. Priya, Tumor Detection Using Fuzzy Logic And Gmrf. Proceedings of 18th International Conference, 11th January 2015, Pune, India, ISBN: 978-93-84209-82-7.

[13] W. Krull, Axiomatische Begrndung der allgemeinen ideal theorie, Sitzungsber. Physik. Med. Soc. Erlangen 56 (1924), 47-63.

[14] R. J. Marks-II, Fuzzy logic technology and applications, IEEE Technical Activities Board, 1994.

[15] Z. M. Maa and B. Q. Hu, Characterizations and new subclasses of I-filters in residuated lattices, Fuzzy Sets and Systems 247 (2014), 92-107.

[16] S. Motamed, L. Torkzadeh, A. B. Saeid and N. Mohtashamnia, Radicals in BL-algebras, Math. Log. Quart. 57(2) (2011), 166 179. / DOI 10.1002/malq.201010003.

[17] J. Pavelka, On fuzzy logic II, Enriched residuated lattices and semantics of propositional calculi, Z. Math. Log. Grundl. Math. 25 (1979), 119-134.

[18] E. Turunen, Boolean deductive systems of BL-algebras, Arch. Math. Logic 40 (2001), 467-473.

[19] E. Turunen, BL-algebras and basic fuzzy logic, Mathware Soft Comput. 6 (1999), 49-61.

[20] E. Turunen and S. Sessa, Locals BL-algebras, Multiple-Valued Logic 6 (2001), 1-21.

[21] E. Turunen, N. Tchikapa and C. Lele, n-Fold implicative basic logic is Godel logic, Soft Computing 16(1) (2012), 177-181

[22] E. Turunen, N. Tchikapa and C. Lele, Erratum to: n-Fold implicative basic logic is Gödel logic, Soft Computing 16(1) (2012), 183-183.

[23] M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939), 335-354.

[24] M. Ward, Residuated distributive lattices, Duke Math. J. 6 (1940), 641-651.