References

EVENTUALLY PERIODIC AND ALMOST LINEAR PERIODIC MATRICES OVER QUASI-MAX-PLUS ALGEBRAS


[1] S. Akiyama and H. Brunotte, Primitive matrices over polynomial semirings, Linear Algebra and its Applications 436 (2012), 3568-3596.

[2] F. L. Baccelli, G. Cohen, G. J. Olsder and J.-P. Quadrat, Synchronization and Linearity, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Ltd., Chichester, 1992. An Algebra for Discrete Event Systems.

[3] H. Brunotte, Periodicity and eigenvalues of matrices over quasi-max-plus algebras, Tsukuba J. Math. 37 (2013), 51-71.

[4] P. Butkovic, Max-Linear Systems: Theory and Algorithms, Springer Monographs in Mathematics, Springer-Verlag London Ltd., London, 2010.

[5] A. V. Finkelstein and M. A. Roytberg, Computation of biopolymers: A general approach to different problems, BioSystems 30 (1993), 1-20.

[6] R. W. Floyd, Algorithm 97: Shortest path, Communications of the ACM, 5, 6, 345, 1962.

[7] S. Gaubert, Max-Plus Algebra, A Guided Tour, SIAM Conference on Control and its Applications, July 6-8, 2009, Denver, Colorado, 2009.

[8] M. Gavalec, Linear matrix period in max-plus algebra, Linear Algebra Appl. 307 (2000), 167-182.

[9] M. Gavalec, Polynomial algorithm for linear matrix period in max-plus algebra, CEJOR Cent. Eur. J. Oper. Res. 8 (2000), 247-258.

[10] J. S. Golan, Semirings and Affine Equations Over Them: Theory and Applications, Vol. 556 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 2003.

[11] J. Gunawardena, An Introduction to Idempotency, in Idempotency (Bristol, 1994), Vol. 11 of Publ. Newton Inst., Cambridge Univ. Press, Cambridge, 1998, pp. 1-49.

[12] D. Handelman, Matrices of positive polynomials, Electron. J. Linear Algebra 19 (2009), 2-89.

[13] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.

[14] G. L. Litvinov, The Maslov dequantization, and idempotent and tropical mathematics: A brief introduction, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 326 (2005), 145-182, 282.

[15] M. Molnárová, Computational complexity of Nachtigall’s representation, Optimization 52 (2003), 93-104.

[16] M. Molnárová, Generalized matrix period in max-plus algebra, Linear Algebra Appl. 404 (2005), 345-366.

[17] M. Molnárová and J. Pribis, Matrix period in max-algebra, Discrete Appl. Math. 103 (2000), 167-175.

[18] E. Seneta, Non-Negative Matrices and Markov Chains, Springer Series in Statistics, Springer, 1981.

[19] S. Warshall, A theorem on Boolean matrices, J. Assoc. Comput. Mach. 9 (1962), 11-12.