[1] A. Azizi, Unités de certains corps de nombres imaginaires et
abéliens sur Ann. Sci. Math. Québec 23(1) (1999),
15-21.
[2] A. Azizi, Sur une question de capitulation, Proceedings of the
American Mathematical Society 130(94) (2002), 2197-2202.
[3] A. Azizi, Sur les unités de certains corps de nombres de
degré 8 sur Ann. Sci. Math. Québec 29(2) (2005),
111-129.
[4] A. Azizi, A. Zekhnini and M. Taous, On the unramified quadratic
and biquadratic extensions of the field IJA 6(24) (2012), 1169-1173.
[5] A. Azizi and M. Taous, Détermination des corps dont les 2-groupe de classes sont de type
(2, 4) ou (2, 2, 2), Rend. Istit. Mat. Univ. Trieste. 40 (2008),
93-116.
[6] A. Scholz, Uber die Löbarkeit der Gleichung Math. Z. 39 (1934), 95-111.
[7] E. Benjamin, F. Lemmermeyer and C. Snyder, Real quadratic fields
with abelian 2-class field tower, J. Number Theory 73(2) (1998),
182-194.
[8] E. Golod and I. Shafarevich, On the class field tower, Izv. Akad.
Nauk SSSR 28 (1964), 261-272 (in Russian); English
translation: Amer. Math. Soc. Transl. 48 (1965), 91-102.
[9] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I,
Acta Arith. LXXII 4 (1995).
[10] F. Lemmermeyer, On 2-class field towers of some imaginary
quadratic number fields, Abh. Math. Sem. Univ. Hamburg 67 (1997),
205-214.
[11] G. Gras, Class Field Theory, From Theory to Practice, Springer
Verlag, 2003.
[12] H. Koch, Zum Satz von Golod-Schafarewitsch, Math. Nachr. 42
(1968), 321-333.
[13] J. Martinet, Tours de corps de classes et estimations de
discriminant, Inv. Math. 44 (1978), 65-73.
[14] J. P. Serre, Sur une question d’Olga Taussky, J. Number
Theor. 2 (1970), 235-236.
[15] N. Blackburn, On prime-power groups in which the derived group
has two generators, Proc. Cambridge Phil. Soc. 53 (1957), 19-27.
[16] O. Taussky, A remark on the class field tower, J. London Math.
Soc. 12 (1937), 82-85.
[17] P. Kaplan, Sur le 2-groupe de classes d’idéaux des
corps quadratiques, J. Reine Angew. Math. 283/284 (1976), 313-363.