References

ON THE NON-INJECTIVE COMPONENT AS GALOIS MODULE OF GENERALIZED JACOBIANS


[1] C. W. Curtis and K. R. Reiner, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. 1, John Wiley & Sons, New York, 1981.

[2] P. J. Hilton and U. Stammbach, A Course in Homological Algebra, Graduate Texts in Mathematics 4, Berlin-Heidelberg-New York, 1971.

[3] F. Jarquín-Zárate and G. Villa-Salvador, Cohomología y Jacobianos, Aportaciones Matemáticas 37 (2007), 67-84.

[4] F. Jarquín-Zárate and G. Villa-Salvador, Integral representation of generalized Jacobians, International Journal of Algebra 3(16) (2009), 747-774.

[5] G. Karpilovsky, Group Representations, North-Holland Mathematics Studies, 175 Vol. I, North-Holland, Amsterdam-London-New York-Tokyo, 1992.

[6] P. R. López-Bautista and G. D. Villa-Salvador, Integral representation of p-class groups in and the Jacobian variety, Can. J. Math. 50 (1998), 1253-1272.

[7] V. J. Mejía-Huguet and M. Rzedowski-Calderón, Galois modular representation of associated Jacobians in the Tamely ramified cyclic case, Manuscripta Math. 126 (2008), 531-543.

[8] S. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian Groups, Cambridge University Press, Cambridge, 1977.

[9] M. Rzedowski-Calderón, G. D. Villa-Salvador and M. L. Madan, Galois module structure of Tate modules, Math. Z. 224 (1997), 77-101.

[10] M. Rzedowski-Calderón and G. D. Villa-Salvador, Galois module structure of Jacobians in unramified extensions, Journal of Algebra 242 (2001), 550-560.

[11] J. P. Serre, Local Fields, Graduate Texts in Mathematics 67, Springer-Verlag, Berlin/Heidelberg/New York, 1979.

[12] J. P. Serre, Algebraic Groups and Class Fields, Graduate Texts in Mathematics 117 Berlin/Heidelberg/New York, 1988.

[13] J. P. Serre, Galois Cohomology, Springer-Verlag, Berlin-Heidelberg, 1997.

[14] R. Valentini, Representations of automorphisms on differentials of function fields of characteristic p, J. Reine und Angew. Math. 335 (1982), 164-179.

[15] R. Valentini, Some p-adic Galois representations for curves in characteristic p, Math. Z. 192 (1986), 541-545.

[16] G. D. Villa-Salvador and M. L. Madan, Structure of semisimple differentials and p-class groups in Manuscripta Math. 57 (1987), 315-350.

[17] G. D. Villa-Salvador and M. L. Madan, Integral representations of p-class groups in semisimple differentials, and Jacobians, Arch. Math. 56 (1991), 254-269.

[18] G. D. Villa-Salvador and M. Rzedowski-Calderón, Galois module structure of generalized Jacobians, Revista Matemática de la Universidad Complutense de Madrid 10 (1997), 39-51.

[19] G. D. Villa-Salvador, Introducción a la Teoría de las Funciones Algebraicas, Fondo de Cultura Económica, México, 2003.

[20] G. D. Villa-Salvador, Topics in the Theory of Algebraic Function Fields, Birkhäuser, Boston-Basel-Berlin, 2006.

[21] E. Weiss, Cohomology of Groups, Academic Press, New York/London, 1969.