References

FUZZY STABILITY OF ALGEBRA HOMOMORPHISMS


[1] M. Amyari and M. S. Moslehian, Approximately ternary semigroup homomorphisms, Lett. Math. Phys.77 (2006), 1-9.

[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.

[3] C. Baak and M. S. Moslehian, Stability of Nonlinear Anal. TMA 63 (2005), 42-48.

[4] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11(3) (2003), 687-705.

[5] N. Bazunova, A. Borowiec and R. Kerner, Universal differential calculus on ternary algebras, Lett. Math. Phys. 67 (2004), 195-206.

[6] S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (1994), 429-436.

[7] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems 48 (1992), 239-248.

[8] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.

[9] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. (USA) 27 (1941), 222-224.

[10] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems 12 (1984), 143-154.

[11] S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems 63 (1994), 207-217.

[12] A. K. Mirmostafaee, M. Mirzavaziri and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159 (2008), 730-738.

[13] M. S. Moslehian, Approximately vanishing of topological cohomology groups, J. Math. Anal. Appl. 318(2) (2006), 758-771.

[14] A. Najati and A. Ranjbari, On homomorphisms between algebra, J. Math. Ineq. 3 (2007), 387-407.

[15] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

[16] S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964 (Chapter VI, Some Questions in Analysis: §1, Stability).

[17] Congxin Wu and Jinxuan Fang, Fuzzy generalization of Klomogoroffs theorem, J. Harbin Inst. Technol. 1 (1984), 1-7. (in Chinese, English abstract)

[18] J.-Z. Xiao and X.-H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets and Systems 133 (2003), 389-399.

[19] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983), 117-143.