References

THE AMALGAMATION PROPERTY AND A PROBLEM OF HENKIN, MONK AND TARSKI


[1] T. Sayed Ahmed, Algebraic Logic, where does it stand today? Bull. Symbolic Logic 11(4) (2005), 465-516.

[2] T. Sayed Ahmed, Algebras for which neat reducts commute with forming subalgebras, Preprint.

[3] T. Sayed Ahmed, Classes of algebras without the amalgamation property, Submitted for publication.

[4] H. Andréka, J. D. Monk and I. Németi, (editors) Algebraic Logic, Amsterdam, North-Holland, 1991.

[5] M. D. Gabbay and L. Maksimova, Interpolation and Definability: Modal and Intuitionistic Logic, Oxford Science Publications (2005).

[6] L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras Part I, North Holland, 1971.

[7] L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras Part II, North Holland, 1985.

[8] J. Madárasz and T. Sayed Ahmed, Amalgamation, interpolation and epimorphisms, Algebra Universalis 56 (2) (2007), 179-210.

[9] L. Maksimova, Amalgamation and interpolation in normal modal logics, Studia Logica 50 (1991), 457-471.

[10] C. Pinter, A simple algebra of first order logic, Notre Dame J. Formal Logic 1 (1973), 361-366.

[11] C. Pinter, Cylindric algebras and algebras of substitutions, Trans. Amer. Math. Soc. 175 (1973), 167-179.

[12] D. Pigozzi, Amalgamation, congruence extension, and interpolation properties in algebras, Algebra Universalis 1 (1971), 269-349.

[13] I. Sain and R. Thompson, Strictly finite schema axiomatization of quasi-polyadic algebras, In [4] 539-571.

[14] G. Sagi and S. Shelah, Weak and strong interpolation for algebraic logics, J. Symbolic Logic 71 (2006) 104-118.