[1] T. Sayed Ahmed, Algebraic Logic, where does it stand today? Bull.
Symbolic Logic 11(4) (2005), 465-516.
[2] T. Sayed Ahmed, Algebras for which neat reducts commute with
forming subalgebras, Preprint.
[3] T. Sayed Ahmed, Classes of algebras without the amalgamation
property, Submitted for publication.
[4] H. Andréka, J. D. Monk and I. Németi, (editors) Algebraic
Logic, Amsterdam, North-Holland, 1991.
[5] M. D. Gabbay and L. Maksimova, Interpolation and Definability:
Modal and Intuitionistic Logic, Oxford Science Publications (2005).
[6] L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras Part I,
North Holland, 1971.
[7] L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras Part II,
North Holland, 1985.
[8] J. Madárasz and T. Sayed Ahmed, Amalgamation, interpolation and
epimorphisms, Algebra Universalis 56 (2) (2007), 179-210.
[9] L. Maksimova, Amalgamation and interpolation in normal modal
logics, Studia Logica 50 (1991), 457-471.
[10] C. Pinter, A simple algebra of first order logic, Notre Dame J.
Formal Logic 1 (1973), 361-366.
[11] C. Pinter, Cylindric algebras and algebras of substitutions,
Trans. Amer. Math. Soc. 175 (1973), 167-179.
[12] D. Pigozzi, Amalgamation, congruence extension, and interpolation
properties in algebras, Algebra Universalis 1 (1971), 269-349.
[13] I. Sain and R. Thompson, Strictly finite schema axiomatization of
quasi-polyadic algebras, In [4] 539-571.
[14] G. Sagi and S. Shelah, Weak and strong interpolation for
algebraic logics, J. Symbolic Logic 71 (2006) 104-118.