References

A GENERALIZATION OF A COMBINATORIAL IDENTITY WITH APPLICATIONS TO HIGHER BINOMIAL MOMENTS


[1] A. Bényi and S. M. Manago, A recursive formula for moments of a binomial distribution, College Math. J. 36 (2005), 68-72.

[2] J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag, New York, 1996.

[3] F. Dubeau, Linear algebra and the sums of powers of integers, Electron. J. Linear Algebra 17 (2008), 577-596.

[4] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed., Addison-Wesley, Reading, MA, 1994.

[5] S. L. Guo and F. Qi, Recursion formulae for J. Anal. Appl. 18 (1999), 1123-1130.

[6] A. H. Joarder and M. Mahmood, An inductive derivation of Stirling numbers of the second kind and their applications in Statistics, J. Appl. Math. & Decision Sc. 1 (1997), 151-157.

[7] D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comp. 203 (1993), 277-294.

[8] V. S. Koroliuk, A. V. Portenko, A. B. Skorokhod and A. F. Turbin, Handbook of Probability Theory and Mathematical Statistics, Nauka, Moscow, 1985.

[9] K. J. McGown and R. Harold, The generalization of Faulhaber’s formula to sums of non-integral powers, J. Math. Anal. Appl. 330 (2007), 571-575.

[10] A. Stuart and J. K. Ord, Kendall’s Advanced Theory of Statistics: Distribution Theory, Vol. 1, 6th ed., Edward Arnold, London, 1994.