[1] Narayan Bhattarai, Dennies Edmondson and Omid Veiseh et al.,
Electrospun chitosan-based nanofibers and their cellular
compatibility, Biomaterials 26(7) (2005), 6176-6184.
[2] Cheng Chen, Lisong Dong and Man Ken Cheung, Preparation and
characterization of biodegradable poly(L-lactide)/chitosan blends,
European Polymer Journal 41 (2005), 958-966.
[3] Victor J. Chen, Laura A. Smith and Peter X. Ma, Bone regeneration
on computer-designed nano-fibrous scaffolds, Biomaterials 27(21)
(2006), 3973-3979.
[4] Catherine M. Cowan, Chia Soo, Kang Ting and Benjamin Wu, Evolving
concepts in bone tissue engineering, Current Topics in Developmental
Biology 66 (2005), 239-285.
[5] Yuan Lu Cui and Xin Hou, Biomimetic surface modification of
ploy(L-lactic acid) with gelatin and its effects on auricular
chondrocytes in vitro, Biomaterials 24(7) (2003), 3859-3868.
[6] Zhi Ding, Jiangning Chen, Shuying Gao, Jianbing Chang, Junfeng
Zhang and E. T. Kang, Immobilization of chitosan onto poly-lactic acid
film surface by plasma graft polymerization to control the morphology
of fibroblast and liver cells, Biomaterials 25(6) (2004), 1059-1067.
[7] Dietmar W. Hutmacher, Scaffolds in tissue engineering bone and
cartilage, Biomaterials 21(4) (2000), 2529-2543.
[8] K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang and Y. S. Seo, Control of
degradation rate and hydrophilicity in electrospun non-woven poly(D,
L-lactide) nanofiber scaffolds for biomedical applications,
Biomaterials 24(27) (2003), 4977-4985.
[9] Ãron Lazáry, Bernadett Balla, János P. Kósa,
Krisztián Bácsi, Zsolt Nagy, István Takács, Péter P.
Varga, Gábor Speer and Péter Lakatos, Effect of gypsum on
proliferation and differentiation of MC3T3-E1 mouse osteoblastic
cells, Biomaterials 28(3) (2001), 393-399.
[10] Soo-Hong Lee and Heungsoo Shin, Matrices and scaffolds for
delivery of bioactive molecules in bone and cartilage tissue
engineering, Advanced Drug Delivery Reviews 59(4-5) (2007), 339-359.
[11] W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan and F. K.
Ko, Electrospun nano-fibrous structure: A novel scaffold for tissue
engineering, J. Biomed. Mater. Res. 60(4) (2002), 613-621.
[12] Wen Liang, Mohamed N. Rahaman, Delbert E. Day, Nicholas W.
Marion, Gwendolen C. Riley and Jeremy J. Mao, Bioactive borate glass
scaffold for bone tissue engineering, Journal of Non-Crystalline
Solids 354(15-16) (2008), 1690-1696.
[13] Ying Luo, George Engelmayr, Debra T. Auguste, Lino da Silva
Ferreira, M. Karp Jeffrey, Rajiv Saigal and Robert Langer,
Three-dimensional scaffolds, Principles of Tissue Engineering (Third
Edition) (2007), 359-373.
[14] João F. Mano, Graham Hungerford and José L. Gómez
Ribelles, Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds,
Materials Science and Engineering C 28(8) (2008), 1356-1365.
[15] R. A. A. Muzzarelli, C. Jeuniaux and G. W. Gooday, Chitin in
Nature and Technology, Plenum, New York, 1986.
[16] Karthikeyan Narayanan, Kwong-Joo Leck, Shujun Gao and Andrew C.
A. Wan, Three-dimensional reconstituted extracellular matrix scaffolds
for tissue engineering, Biomaterials 30(26) (2009), 4309-4317.
[17] D. L. Nettles, S. H. Elder and J. A. Gilbert, Potential use of
chitosan as a cell scaffold material for cartilage tissue
engineering, Tissue Eng. 8 (2002), 1009-1016.
[18] Kousaku Ohkawa et al., Electrospinning of chitosan, Macromol.
Rapid Commun. 25 (2004), 1600-1605.
[19] T. A. Owen and M. Aronow et al., Progressive development of the
rat osteoblast phenotype in vitro: Reciprocal relationships in
expression of genes associated with osteoblast proliferation and
differentiation during formation of the bone extracellular matrix, J.
Cell Physiol. (1990), 143.
[20] K. Rezwan, Q. Z. Chen, J. J. Blaker and Aldo Roberto Boccaccini,
Biodegradable and bioactive porous polymer/inorganic composite
scaffolds for bone tissue engineering, Biomaterials 27(18) (2006),
3413-3431.
[21] J. H. G. Rocha, A. F. Lemos, S. Agathopoulos, P. Valério, S.
Kannan, F. N. Oktar and J. M. F. Ferreira, Scaffolds for bone
restoration from cuttlefish, Bone 37(6) (2005), 850-857.
[22] Patricia M. Taylora, Anthony E. G. Cass and Magdi H. Yacoub,
Extracellular matrix scaffolds for tissue engineering heart valves,
Progress in Pediatric Cardiology 21(2) (2006), 219-225.
[23] K. Webb, V. Hlady and P. A. Tresco, Relative importance of
surface wettability and charged functional groups on NIH3T3 fibroblast
attachment, spreading, and cytoskeletal organization, J. Biomed.
Mater. Res. 41 (1998), 422-430.
[24] Chengtie Wu, Yogambha Ramaswamy, Philip Boughton and Hala
Zreiqat, Improvement of mechanical and biological properties of porous
CaSiO3 scaffolds by poly(d,l-lactic acid) modification, Acta
Biomaterialia 4(2) (2008), 343-353.
[25] Hua Wu, Ying Wan, Xiaoying Cao and Quan Wu, Proliferation of
chondrocytes on porous poly(d, l-lactide)/chitosan scaffolds, Acta
Biomaterialia 4(1) (2008), 76-87.
[26] Shintaro Yamanen, Norimasa Iwasakia, Tokifumi Majima, Tadanao
Funakoshia, Tatsuya Masuko, Kazuo Harada, Akio Minami, Kenji Monde and
Shin-Ichiro Nishimura, Feasibility of chitosan-based hyaluronic acid
hybrid biomaterial for a novel scaffold in cartilage tissue
engineering, Biomaterials 26(6) (2005), 611-619.
[27] F. Yang, R. Murugan, S. Wang and S. Ramakrishna, Electrospinning
of nano/micro scale poly(L-lactic acid) aligned fibers and their
potential in neural tissue engineering, Biomaterials 26(15) (2005),
2603-2610.
[28] Xiufang Zhang, Hui Hua, Xinyuan Shen and Qing Yang, In vitro
degradation and biocompatibility of poly(L-lactic acid)/chitosan fiber
composites, Polymer 48 (2007), 1005-1011.