References

FABRICATION AND CHARACTERIZATION OF ELECTROSPUN CHITOSAN/POLY(L-LACTIC ACID) NANO/MICRO FIBERS AS A SCAFFOLD
FOR BONE REGENERATION


[1] Narayan Bhattarai, Dennies Edmondson and Omid Veiseh et al., Electrospun chitosan-based nanofibers and their cellular compatibility, Biomaterials 26(7) (2005), 6176-6184.

[2] Cheng Chen, Lisong Dong and Man Ken Cheung, Preparation and characterization of biodegradable poly(L-lactide)/chitosan blends, European Polymer Journal 41 (2005), 958-966.

[3] Victor J. Chen, Laura A. Smith and Peter X. Ma, Bone regeneration on computer-designed nano-fibrous scaffolds, Biomaterials 27(21) (2006), 3973-3979.

[4] Catherine M. Cowan, Chia Soo, Kang Ting and Benjamin Wu, Evolving concepts in bone tissue engineering, Current Topics in Developmental Biology 66 (2005), 239-285.

[5] Yuan Lu Cui and Xin Hou, Biomimetic surface modification of ploy(L-lactic acid) with gelatin and its effects on auricular chondrocytes in vitro, Biomaterials 24(7) (2003), 3859-3868.

[6] Zhi Ding, Jiangning Chen, Shuying Gao, Jianbing Chang, Junfeng Zhang and E. T. Kang, Immobilization of chitosan onto poly-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells, Biomaterials 25(6) (2004), 1059-1067.

[7] Dietmar W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials 21(4) (2000), 2529-2543.

[8] K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang and Y. S. Seo, Control of degradation rate and hydrophilicity in electrospun non-woven poly(D, L-lactide) nanofiber scaffolds for biomedical applications, Biomaterials 24(27) (2003), 4977-4985.

[9] Áron Lazáry, Bernadett Balla, János P. Kósa, Krisztián Bácsi, Zsolt Nagy, István Takács, Péter P. Varga, Gábor Speer and Péter Lakatos, Effect of gypsum on proliferation and differentiation of MC3T3-E1 mouse osteoblastic cells, Biomaterials 28(3) (2001), 393-399.

[10] Soo-Hong Lee and Heungsoo Shin, Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering, Advanced Drug Delivery Reviews 59(4-5) (2007), 339-359.

[11] W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan and F. K. Ko, Electrospun nano-fibrous structure: A novel scaffold for tissue engineering, J. Biomed. Mater. Res. 60(4) (2002), 613-621.

[12] Wen Liang, Mohamed N. Rahaman, Delbert E. Day, Nicholas W. Marion, Gwendolen C. Riley and Jeremy J. Mao, Bioactive borate glass scaffold for bone tissue engineering, Journal of Non-Crystalline Solids 354(15-16) (2008), 1690-1696.

[13] Ying Luo, George Engelmayr, Debra T. Auguste, Lino da Silva Ferreira, M. Karp Jeffrey, Rajiv Saigal and Robert Langer, Three-dimensional scaffolds, Principles of Tissue Engineering (Third Edition) (2007), 359-373.

[14] João F. Mano, Graham Hungerford and José L. Gómez Ribelles, Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds, Materials Science and Engineering C 28(8) (2008), 1356-1365.

[15] R. A. A. Muzzarelli, C. Jeuniaux and G. W. Gooday, Chitin in Nature and Technology, Plenum, New York, 1986.

[16] Karthikeyan Narayanan, Kwong-Joo Leck, Shujun Gao and Andrew C. A. Wan, Three-dimensional reconstituted extracellular matrix scaffolds for tissue engineering, Biomaterials 30(26) (2009), 4309-4317.

[17] D. L. Nettles, S. H. Elder and J. A. Gilbert, Potential use of chitosan as a cell scaffold material for cartilage tissue engineering, Tissue Eng. 8 (2002), 1009-1016.

[18] Kousaku Ohkawa et al., Electrospinning of chitosan, Macromol. Rapid Commun. 25 (2004), 1600-1605.

[19] T. A. Owen and M. Aronow et al., Progressive development of the rat osteoblast phenotype in vitro: Reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix, J. Cell Physiol. (1990), 143.

[20] K. Rezwan, Q. Z. Chen, J. J. Blaker and Aldo Roberto Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 27(18) (2006), 3413-3431.

[21] J. H. G. Rocha, A. F. Lemos, S. Agathopoulos, P. Valério, S. Kannan, F. N. Oktar and J. M. F. Ferreira, Scaffolds for bone restoration from cuttlefish, Bone 37(6) (2005), 850-857.

[22] Patricia M. Taylora, Anthony E. G. Cass and Magdi H. Yacoub, Extracellular matrix scaffolds for tissue engineering heart valves, Progress in Pediatric Cardiology 21(2) (2006), 219-225.

[23] K. Webb, V. Hlady and P. A. Tresco, Relative importance of surface wettability and charged functional groups on NIH3T3 fibroblast attachment, spreading, and cytoskeletal organization, J. Biomed. Mater. Res. 41 (1998), 422-430.

[24] Chengtie Wu, Yogambha Ramaswamy, Philip Boughton and Hala Zreiqat, Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(d,l-lactic acid) modification, Acta Biomaterialia 4(2) (2008), 343-353.

[25] Hua Wu, Ying Wan, Xiaoying Cao and Quan Wu, Proliferation of chondrocytes on porous poly(d, l-lactide)/chitosan scaffolds, Acta Biomaterialia 4(1) (2008), 76-87.

[26] Shintaro Yamanen, Norimasa Iwasakia, Tokifumi Majima, Tadanao Funakoshia, Tatsuya Masuko, Kazuo Harada, Akio Minami, Kenji Monde and Shin-Ichiro Nishimura, Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering, Biomaterials 26(6) (2005), 611-619.

[27] F. Yang, R. Murugan, S. Wang and S. Ramakrishna, Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials 26(15) (2005), 2603-2610.

[28] Xiufang Zhang, Hui Hua, Xinyuan Shen and Qing Yang, In vitro degradation and biocompatibility of poly(L-lactic acid)/chitosan fiber composites, Polymer 48 (2007), 1005-1011.