References

PLASMA-RELATED GRAPHENE ETCHING: A MINI-REVIEW


[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696) (2004), 666-669.
DOI: http://dx.doi.org/10.1126/science.1102896

[2] V. P. Pham, H. S. Jang, D. Whang and J. Y. Choi, Direct growth of graphene on rigid and flexible substrates: Progress, applications, and challenges, Chem. Soc. Rev. 46(20) (2017), 6276-6300.
DOI: http://dx.doi.org/10.1039/c7cs00224f

[3] V. P. Pham, M. T. Nguyen, J. W. Park, S. S. Kwak, D. H. T. Nguyen, M. K. Mun, H. D. Phan, D. S. Kim, K. H. Kim, J. Lee, N. E. Lee and G. Y. Yeom, Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity, 2D Materials 4(2) (2017), Article 025049.
DOI: https://doi.org/10.1088/2053-1583/aa6390

[4] V. P. Pham, K. N. Kim, M. H. Jeon, K. S. Kim and G. Y. Yeom, Cyclic chlorine trap-doping for transparent, conductive, thermally stable and damage-free graphene, Nanoscale 6(24) (2014), 15301-15308.
DOI: http://dx.doi.org/10.1039/c4nr04387a

[5] V. P. Pham, K. H. Kim, M. H. Jeon, S. H. Lee, K. N. Kim and G. Y. Yeom, Low damage pre-doping on CVD graphene/Cu using a chlorine inductively coupled plasma, Carbon 95 (2015), 664-671.
DOI: https://doi.org/10.1016/j.carbon.2015.08.070

[6] V. P. Pham, A. Mishra and G. Y. Yeom, The enhancement of hall mobility and conductivity of CVD graphene through radical doping and vacuum annealing, RSC Adv. 7(26) (2017), 16104-16108.
DOI: http://dx.doi.org/10.1039/c7ra01330b

[7] V. P. Pham, D. S. Kim, K. S. Kim, J. W. Park, K. C. Yang, S. H. Lee, G. Y. Yeom and K. N. Kim, Low energy plasma doping of few-layer graphene, Sci. Adv. Mater. 8(4) (2016), 884-890.
DOI: https://doi.org/10.1166/sam.2016.2549

[8] K. N. Kim, V. P. Pham and G. Y. Yeom, Chlorine radical doping of a few layer graphene with low damage, ECS J. Solid State Sci. Technol. 4(6) (2015), N5095-N5097.
DOI: http://dx.doi.org/10.1149/2.0141506jss

[9] V. P. Pham, Chemical vapor deposited graphene synthesis with same-oriented hexagonal domains, Eng. Press 1(2) (2018), 39-42.
DOI: 10.28964/EngPress-1-107

[10] V. P. Pham, How can the nanomaterial surfaces be highly cleaned?, Edelweiss Appl. Sci. Tech. 2(1) (2018), 184-186.

[11] V. P. Pham, Layer-by-layer thinning of 2D materials, Edelweiss Appl. Sci. Tech. 2(1) (2018), 36-37.

[12] V. P. Pham, Cleaning of graphene surface by low-pressure air plasma, Royal Society Open Science 5 (2018), Article 172395.
DOI: http://dx.doi.org/10.1098/rsos.172395

[13] H. Tomas, P. Jan, K. Richard, S. Pavel, D. Petr, W. Martin and C. Mirko, Atmospheric dry hydrogen plasma reduction of inkjet-printed flexible graphene oxide electrodes, ChemSusChem 11(5) (2018), 941-947.
DOI: http://dx.doi.org/10.1002/cssc.201702139

[14] A. C. Ferrari, F. Bonaccorso, V. Fal’ko et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7(11) (2015), 4598-4810.
DOI: http://dx.doi.org/10.1039/c4nr01600a

[15] S. Z. Butler, S. M. Hollen, L. Cao, Yi Cui, J. A. Gupta, H. R. Guitierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. J. Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Rouff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4) (2013), 2898-2926.
DOI: http://dx.doi.org/10.1021/nn400280c

[16] A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007), 183-191.
DOI: http://dx.doi.org/10.1038/nmat1849

[17] H. Zhang, P. Yang and M. Prato, Grand challenges for nanoscience and nanotechnology, ACS Nano 9(7) (2015), 6637-6640.
DOI: http://dx.doi.org/10.1021/acsnano.5b04386

[18] V. M. Donnelly and A. Kornblit, Plasma etching: Yesterday, today, and tomorrow, J. Vac. Sci. Tech. A 31(5) (2013), Article 050825.
DOI: https://doi.org/10.1116/1.4819316

[19] H. Al-Mumen, F. Rao, W. Li and L. Dong, Singular sheet etching of graphene with oxygen plasma, Nano-Micro Lett. 6(2) (2014), 116-124.
DOI: http://dx.doi.org/10.5101/nml.v6i2.p116-124

[20] Y. J. Shin, Y. Wang, H. Huang, G. Kalon, A. T. S. Wee, Z. Shen, C. S. Bhatia and H. Yang, Surface-energy engineering of graphene, Langmuir 26(6) (2010), 3798-3802.
DOI: http://dx.doi.org/10.1021/la100231u

[21] L. Liu, Y. Zhang, W. Wang, C. Gu, X. Bai and E. Wang, Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbon and on-chip bandgap tuning of graphene, Adv. Mater. 23(10) (2011), 1246-1251.
DOI: https://doi.org/10.1002/adma.201003847

[22] X. Yang, S. Tang, G. Ding, X. Xie, M. Jiang and F. Huang, Layer-by-layer thinning of graphene by plasma irradiation and post-annealing, Nanotechnology 23(2) (2011), Article 025704.
DOI: http://dx.doi.org/10.1088/0957-4484/23/2/025704

[23] W. S. Lim, Y. Y. Kim, H. Kim, S. Jang, N. Kwon, B. J. Park, J. H. Ahn, I. Chung, B. H. Hong and G. Y. Yeom, Atomic layer etching of graphene for full graphene device fabrication, Carbon 50(2) (2011), 429-435.
DOI: https://doi.org/10.1016/j.carbon.2011.08.058

[24] K. S. Kim, Y. J. Ji, Y. Nam, K. H. Kim, E. Singh, J. Y. Lee and G. Y. Yeom, Atomic layer etching of graphene through controlled ion beam for graphene-based electronics, Sci. Rep. 7 (2017), Article 2462.
DOI: http://dx.doi.org/10.1038/s41598-017-02430-8

[25] M. Wojtasszek, N. Tombros, A. Caretta, P. H. M. V. Loosdrecht and B. J. V. Wees, A road hydrogenating graphene by a reactive ion etching plasma, J. Appl. Phys. 110(6) (2011), Article 063715.
DOI: https://doi.org/10.1063/1.3638696

[26] M. C. Lemme, D. C. Bell, J. R. Williams, L. A. Stern, B. W. H. Baugher, P. J. Herrero and C. M. Marcus, Etching of graphene devices with a helium ion beam, ACS Nano 3(9) (2009), 2674-2676.
DOI: http://dx.doi.org/10.1021/nn900744z

[27] W. Luo, J. Xie, C. Li, Y. Zhang and Y. Xia, High-precision thickness regulation of graphene layers with low energy helium plasma implantation, Nanotechnology 23(37) (2012), Article 375303.
DOI: https://doi.org/10.1088/0957-4484/23/37/375303