[1] J. Schultz, J. Ueda and H. Asada, Cellular Actuators,
Butterworth-Heinemann Publisher: Oxford (2017), 382.
[2] K. Uchino, Piezoelectric Actuator and Ultrasonic Motors, Kluwer
Academic Publisher: Boston MA (1997), 347.
[3] J. Przybylski, Static and dynamic analysis of a flextensional
transducer with an axial piezoelectric actuation, Engineering
Structures 84 (2015), 140-151.
DOI: https://doi.org/10.1016/j.engstruct.2014.11.025
[4] J. Ueda, T. W. Secord and H. H. Asada, Large effective-strain
piezoelectric actuators using nested cellular architecture with
exponential strain amplification mechanisms, IEEE/ASME Transactions on
Mechatronics 15(5) (2010), 770-782.
DOI: https://doi.org/10.1109/TMECH.2009.2034973
[5] M. Karpelson, G.-Y. Wei and R. J. Wood, Driving high voltage
piezoelectric actuators in microrobotic applications, Sensors and
Actuators A: Physical 176 (2012), 78-89.
DOI: https://doi.org/10.1016/j.sna.2011.11.035
[6] S. M. Afonin, Solution of the wave equation for the control of an
electromagnetoelastic transducer, Doklady Mathematics 73(2) (2006),
307-313.
DOI: https://doi.org/10.1134/S1064562406020402
[7] S. M. Afonin, Structural parametric model of a piezoelectric
nanodisplacement transduser, Doklady Physics 53(3) (2008), 137-143.
DOI: https://doi.org/10.1134/S1028335808030063
[8] S. M. Afonin, Stability of strain control systems of nano- and
microdisplacement piezotransducers, Mechanics of Solids 49(2) (2014),
196-207.
DOI: https://doi.org/10.3103/S0025654414020095
[9] V. Talakokula, S. Bhalla, R. J. Ball, C. R. Bowen, G. L. Pesce, R.
Kurchania, B. Bhattacharjee, A. Gupta and K. Paine, Diagnosis of
carbonation induced corrosion initiation and progression in reinforced
concrete structures using piezo-impedance transducers, Sensors and
Actuators A: Physical 242 (2016), 79-91.
DOI: https://doi.org/10.1016/j.sna.2016.02.033
[10] W. G. Cady, Piezoelectricity An Introduction to the Theory and
Applications of Electromechancial Phenomena in Crystals, McGraw-Hill
Book Company, New York, London (1946), 806.
[11] Physical Acoustics: Principles and Methods, Vol. 1. Part A.
Methods and Devices, Editor W. Mason, New York: Academic Press (1964),
515.
[12] S. Prasad, Q. Gallas, S. Horowitz, B. Homeijer et al., Analytical
electroacoustic model of a piezoelectric composite circular plate,
AIAA Journal 41(10) (2006), 2311-2318.
DOI: https://doi.org/10.2514/1.19855
[13] M. Chiatto, F. Capuano, G. Coppola and L. de Luca, LEM
characterization of synthetic jet actuators driven by piezoelectric
element: A review, Sensors 17(6) (2017), 1216-1246.
DOI: https://doi.org/10.3390/s17061216
[14] S. M. Afonin, Structural-parametric model and transfer functions
of electroelastic actuator for nano- and microdisplacement, Chapter 9
in Piezoelectrics and Nanomaterials: Fundamentals Developments and
Applications, Editor I. A. Parinov, Nova Science: New York (2015),
225-242.
[15] S. M. Afonin, Structural-parametric model electromagnetoelastic
actuator nano- and microdisplacement for precision engineering,
Engineering and Technology 3(6) (2016), 110-119.
[16] S. M. Afonin, Structural-parametric models and transfer functions
of electromagnetoelastic actuators nano- and microdisplacement for
mechatronic systems, International Journal of Theoretical and Applied
Mathematics 2(2) (2016), 52-59.
DOI: https://doi.org/10.11648/j.ijtam.20160202.15
[17] S. M. Afonin, Parametric structural diagram of a piezoelectric
converter, Mechanics of Solids 37(6) (2002), 85-91.
[18] S. M. Afonin, Deformation, fracture, and mechanical
characteristics of a compound piezoelectric transducer, Mechanics of
Solids 38(6) (2003), 78-82.
[19] S. M. Afonin, Parametric block diagram and transfer functions of
a composite piezoelectric transducer, Mechanics of Solids 39(4)
(2004), 119-127.
[20] S. M. Afonin, Generalized parametric structural model of a
compound elecromagnetoelastic transduser, Doklady Physics 50(2)
(2005), 77-82.
DOI: https://doi.org/10.1134/1.1881716
[21] S. M. Afonin, Design static and dynamic characteristics of a
piezoelectric nanomicrotransducers, Mechanics of Solids 45(1) (2010),
123-132.
DOI: https://doi.org/10.3103/S0025654410010152
[22] S. M. Afonin, Electromechanical deformation and transformation of
the energy of a nano-scale piezomotor, Russian Engineering Research
31(7) (2011), 638-642.
DOI: https://doi.org/10.3103/S1068798X11070033
[23] S. M. Afonin, Electroelasticity problems for multilayer nano- and
micromotors, Russian Engineering Research 31(9) (2011), 842-847.
DOI: https://doi.org/10.3103/S1068798X11090036
[24] S. M. Afonin, Nano- and micro-scale piezomotors, Russian
Engineering Research 32(7-8) (2012), 519-522.
DOI: https://doi.org/10.3103/S1068798X12060032
[25] S. M. Afonin, Optimal control of a multilayer submicromanipulator
with a longitudinal piezo effect, Russian Engineering Research 35(12)
(2015), 907-910.
DOI: https://doi.org/10.3103/S1068798X15120035
[26] S. M. Afonin, Block diagrams of a multilayer piezoelectric motor
for nano- and microdisplacements based on the transverse piezoeffect,
Journal of Computer and Systems Sciences International 54(3) (2015),
424-439.
DOI: https://doi.org/10.1134/S1064230715020021
[27] S. M. Afonin, Absolute stability conditions for a system
controlling the deformation of an elecromagnetoelastic transduser,
Doklady Mathematics 74(3) (2006), 943-948.
DOI: https://doi.org/10.1134/S1064562406060391
[28] S. M. Afonin, Elastic compliances and mechanical and adjusting
characteristics of composite piezoelectric transducers, Mechanics of
Solids 42(1) (2007), 43-49.
DOI: https://doi.org/10.3103/S0025654407010062
[29] S. M. Afonin, Static and dynamic characteristics of a multi-layer
electroelastic solid, Mechanics of Solids 44(6) (2009), 935-950.
DOI: https://doi.org/10.3103/S0025654409060119
[30] S. M. Afonin, Structural-parametric model electromagnetoelastic
actuator nanodisplacement for mechatronics, International Journal of
Physics 5(1) (2017), 9-15.
DOI: https://doi.org/10.12691/ijp-5-1-27
[31] S. M. Afonin, A Structural-parametric model of electro elastic
actuator for nano- and microdisplacement of mechatronic system,
Chapter 8 in Advances in Nanotechnology, Volume 19, Editors Z. Bartul
and J. Trenor, Nova Science: New York (2017), 259-284.
[32] Springer Handbook of Nanotechnology, Ed. by B. Bhushan, Springer:
Berlin, New York (2004), 1222.
[33] S. M. Afonin, Structural-parametric model of piezoactuator nano-
and microdisplacement for nanoscience, AASCIT Journal of Nanoscience
3(3) (2017), 12-18.
[34] S. M. Afonin, Solution wave equation and parametric structural
schematic diagrams of electromagnetoelastic actuators nano- and
microdisplacement, International Journal of Mathematical Analysis and
Applications 3(4) (2016), 31-38.
[35] S. M. Afonin, Structural-parametric model electromagnetoelastic
actuator nano- and microdisplacement for precision engineering,
Engineering and Technology 3(6) (2016), 110-119.
[36] S. M. Afonin, Decision wave equation and block diagram of
electromagnetoelastic actuator nano- and microdisplacement for
communications systems, International Journal of Information and
Communication Sciences 1(2) (2016), 22-29.
DOI: https://doi.org/10.11648/j.ijics.20160102.12