References

BIOMECHANICAL AND FRACTAL ANALYSIS OF ULNA BONE


[1] D. Guede, P. González and J. R. Caeiro, Biomecánica y hueso (1): Conceptos básicos y ensayos mecánicos clásicos, Rev. Osteoporos. Metab. Miner. 5(1) (2013), 43-50. ISSN: 1889-836X. http://dx.doi.org/10.4321/S1889-836X2013000100008

[2] J. Ríos-Díaz, J. R. Caeiro Rey, J. J. Martínez Payá, S. Dapía Robleda and M. E. Del Baño Aledo, Relación entre las variables morfo-estructurales de dimensión fractal, lacunaridad y entropía en el hueso trabecular de la porción proximal del fémur, Revista Española de Enfermedades Metabólicas Oseas. 18(01) (2009). Doi:10.1016/S1132-8460(09)70764-0.

[3] Khaled Harrar and Hamami Latifa, The fractal dimension correlated to the bone mineral density, Journal Wseas Transactions on Signal Processing 4(3) (2008). ISSN: 1790-5052. E-ISSN: 2224-3488.

[4] Sanjay Mishra, Andrea E. Tami and Melissa L. Knothe, Fractal Analysis of Bone Cell Syncytium in Normal and Diseased Bone, 2003 Summer Bioengineering Conference, June 25-29, Sonesta Beach Resort in Key Biscayne, Florida. USA.

www.tulane.edu/~sbc2003/pdfdocs/0293.PD

[5] Hyeon-Ju Kang, Song-Wha Jeong, Bong-Hye Jo, Yong-Deok Kim and Seong Sik Kim, Observation of trabecular changes of the mandible after orthognathic surgery using fractal analysis, Journal of the Korean Association of Oral Maxillofacial Surgeons 38 (2012), 96-100. P-ISSN: 2234-7550. E-ISSN: 2234-5930.

http://dx.doi.org/10.5125/jkaoms.2012.38.2.96

[6] S. B. Wells Webster, Nueva Trigonometría Plana y Esférica, D. C. HEATH & Cía., Editors. Boston, 1917.

http://www.biblioises.com.ar/Contenido/500/520/Astr ometria.pdf

[7] Berrosco Manuel, Ramírez María Eva, Enríques-Salamanca José Manuel and Pérez-Peña Alejandro, Notas y Apuntes de Trigonometría Esférica y Astronomía de Posición, Laboratorio de Astronomía y Geodesia, Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cádiz. España, 2003.

[8] H. O. Peitgen, H. Jürgen and D. Saupe, Fractals for the Classroom, Introduction to Fractals and Chaos, Ed. Springer-Verlag, Second Edition, Part Two, New York, USA, 1993. ISBN: 3-540-97041-X.

[9] V. Talanquer, Fractus, fracta, fractales, Fractales de laberintos y espejos, Fondo de Cultura Económica, Núm. 147(2a), Edición, México, 2002. ISBN: 968-16-6367-4.

[10] B. B. Mandelbrot, Multifractals and 1/f Noise, Springer-Verlag, 1999. ISBN: 0-387-98539-5.

[11] F. Casanova del Angel and J. Retama Velasco, Fractal cracks propagation in aluminum, Modeling and Numerical Simulation of Material Science 3(3A) (2013), 23-32. Doi: 10.4236/mnsms.2013.33A004.

[12] A. R. Imre and J. Bogaert, The fractal dimension as a measure of the quality of habitats, Acta Biometrica 52 (2004), 41-56; Kluwer Academic Publishers, Printed in the Netherlands.

[13] Duanwen Shi, Jian Jiang, Enke Tian and Chiwei Lung, Perimeter-area relation and fractal dimension of fracture surfaces, Journal of Materials Science & Technology 13(5) (1997), 443-445. ISSN: 1005-0302.

[14] A. Annadhason, Methods of fractal dimension computation, International Journal of Computer Science and Information Technology & Security 2(1) (2012), 166-169. ISSN: 2249-9555

[15] Bourke Paul, Fractal Dimension Calculator, 2003.

http://palubourke.net/fractals/fracdim/

[16] Benoit 1.3. (2008). TruSoft Int’l Inc. USA. www.trusoft.com