References

A SIMPLE PROCESS FOR COVALENT HYBRID OF CORE-SHELL ALOOH-POLYGLYCOL


[1] J. Zhang, Y. Yang, K. Lee and M. Ouyang, Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches, Science 327 (2010), 1634-1638.

[2] D. R. Stutman, A. Klein, M. S. El-Aasser and J. W. Vanderhoff, Mechanism of core/shell emulsion polymerization, Ind. Eng. Chem. Prod. Res. Dev. 24 (1985), 404-412.

[3] C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire and N. J. Halas, Magnetic plasmonic core shell nanoparticles, ACS NANO 3 (2009), 1379-1388.

[4] P. Scodeller, V. Flexer, R. Szamocki, E. J. Calvo, N. Tognalli, H. Troiani and A. Fainstein, Wired-enzyme core-shell Au nanoparticle biosensor, J. Am. Chem. Soc. 130 (2008), 12690-12697.

[5] Y. W. Cao, R. C. Jin and C. A. Mirkin, DNA-Modified core-shell Ag/Au nanoparticles, J. Am. Chem. Soc. 123 (2001), 7961-7962.

[6] U. Hippi, J. Mattila, M. Korhonen and J. Seppälä, Compatibilization of polyethylene/aluminum hydroxide (PE/ATH) and polyethylene/magnesium hydroxide (PE/MH) composites with functionalized polyethylenes, Polymer 44 (2003), 1193-1201.

[7] K. Mai, Z. Li, Y. Qiu and H. Zeng, Mechanical properties and fracture morphology of composites modified by PP grafting with acrylic acid, J. Appl. Polym. Sci. 80 (2001), 2617-2623.

[8] F. Rahma and S. Fellahi, Performance evaluation of synthesized acrylic acid grafted polypropylene within composites, Polymer Comp. 21 (2000), 175-186.

[9] P. R. Hornsby and C. L. Watson, Interfacial modification of polypropylene composites filled with magnesium hydroxide, J. Mater. Sci. 30 (1995), 5347-5455.

[10] H. Ishida, A review of recent progress in the studies of molecular and microstructure of coupling agents and their functions in composites coatings and adhesive joints, Polymer Comp. 5 (1984), 101-123.

[11] W. Y. Chiang and C. H. Hu, Approaches of interfacial modification for flame retardant polymeric materials, Composites 32 (2001), 517-524.

[12] J. Jancar and J. Kucera, Yield behavior of composites, II: Enhanced interfacial adhesion, Polymer Eng. Sci. 30 (1990), 714-720.

[13] F. Wypych, W. H. Schreiner and R. Marangoni, Covalent grafting of ethylene glycol and glycerol into brucite, Journal of Colloid and Interface Science 253 (2002), 180-184.

[14] J. L. Yin, X. F. Qian and J. Yin, Aqueous route to prepare large-scale array of highly ordered polystyrene/aluminum hydroxide microspheres, J. Solid State Chem. 177 (2004), 3603-3609.

[15] C. M. Liauw, G. C. Lees, S. J. Hurst, R. N. Thon and D. C. Dobson, Plastic, Rubber and Composites Processing and Applications 24 (1995 ), 211-219.

[16] B. M. Novak, Hybrid nanocomposite materials-between inorganic glasses and organic polymers, Adv. Mater. 5 (1993), 422-433.

[17] H. Y. Liu, G. L. Ning, Z. H. Gan and Y. Lin, Emulsion-based synthesis of unaggregated, spherical alpha alumina, Mater. Lett. 62 (2008), 1685-1688.

[18] G. A. Mazzocchin, F. Agnoli and S. Mazzocchin, Investigation of a Roman age “bulk pigment” found in Vicenza, Anal. Chim. Acta. 475 (2003), 181-190.

[19] S. Music, O. Dragcevic and S. Popovic, Hydrothermal crystallization of boehmite from freshly precipitated aluminium hydroxide, Mater. Lett. 40 (1999), 269-274.

[20] J. L. Guimaraes, R. Marangoni, L. P. Ramos and F. Wypych, Covalent grafting of ethylene glycol into the layered double hydroxide, Journal of Colloid and Interface Science 227 (2000), 445-451.

[21] M. Janek, K. Emmerich, S. Heissler and R. Nesch, Thermally induced grafting reactions of ethylene glycol and glycerol intercalates of kaolinite, Chem. Mater. 19 (2007), 684-693.

[22] M. Inoue, H. Kominami, Y. Kondo and T. Inui, Organic derivatives of layered inorganics having the second stage structure, Chem. Mater. 9 (1997), 1614-1619.

[23] X. Li, J. W. Ye, Y. Lin, L. L. Fan, H. C. Pang, W. T. Gong and G. L. Ning, Facile synthesis and flame retardant performance of whiskers, Powder Technology 206 (2011), 358-361.