References

VALORIZATION OF AGRICULTURAL WASTES IN MOROCCO: EXTRACTION OF CELLULOSE NANOCRYSTALS FROM SUGARCANE BAGASSE FIBERS AS CASE STUDY


[1] C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon and M. Poliakoff, Valorization of biomass: Deriving more value from waste, Science 337 (2012), 695.

[2] E. A. Martínez, S. S. Silva, J. B. A. Silva, A. I. N. Solenzal and M. G. A. Felipe, The influence of pH and dilution rate on continuous production of xylitol from sugarcane bagasse hemicellulosic hydrolysate by C. Guilliermondii, Process Biochem. 38 (2003), 1677.

[3] J. M. Hernández-Salas, M. S. Villa-Ramírez, J. S. Veloz-Rendón, K. N. Rivera-Hernández, R. A. González-César and M. A. Plascencia-Espinosa, Comparative hydrolysis and fermentation of sugarcane and agave bagasse, Bioresour. Technol. 100 (2009), 1238.

[4] A. K. Chandel, R. K. Kapoor, A. Singh and R. C. Kuhad, Detoxification of sugarcane bagasse hydrolysate improves ethanol production by candida shehatae NCIM 3501, Bioresour. Technol. 98 (2007), 1947.

[5] K. K. Cheng, B. Y. Cai, J. A. Zhang, H. Z. Ling, Y. J. Zhou, J. P. Ge and J. M. Xu, Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process, Biochem. Eng. J. 38 (2008), 105.

[6] D. Restuti and A. Michaelowa, The economic potential of bagasse cogeneration as CDM projects in Indonesia, Energ. Policy 35 (2007), 3952.

[7] J. A. Quintero, M. I. Montoya, O. J. Sánchez, O. H. Giraldo and C. A. Cardona, Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case, Energy 33 (2008), 385.

[8] X. F. Sun, F. Xu, R. C. Sun, P. Fowler and M. S. Baird, Characteristics of degraded cellulose obtained from steam-exploded wheat straw, Carbohydr. Res. 340 (2005), 97.

[9] A. Moubarik and N. Grimi Boussetta, Structural and thermal characterization of Moroccan sugarcane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene, Compos. Part B Eng. 52 (2013), 233.

[10] J. Li, X. Wei, Q. Wang, J. Chen, G. Chang, L. Kong, J. Su and Y. Liu, Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization, Carbohydr. Polym. 90 (2012), 1609.

[11] E. D. M. Teixeira, T. J. Bondancia, K. B. R. Teodoro, A. C. Corrêa, J. M. Marconcini and L. H. C. Mattoso, Sugarcane bagasse whiskers: Extraction and characterizations, Ind. Crop. Prod. 33 (2011), 63.

[12] R. G. P. Viera, G. R. Filho, R. M. N. D. Assunção, C. D. S. Meireles, J. G. Vieira and G. S. D. Oliveira, Synthesis and characterization of methylcellulose from sugarcane bagasse cellulose, Carbohydr. Polym. 67 (2007), 182.

[13] A. Mandal and D. Chakrabarty, Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization, Carbohydr. Polym. 86 (2011), 1291.

[14] J. Bras, M. L. Hassan, C. Bruzesse, E. A. Hassan, N. A. El Wakil and A. Dufresne, Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites, Ind. Crop. Prod. 32 (2010), 627.

[15] M. A. S. Azizi-Samir, F. Alloin, J. Y. Sanchez and A. Dufresne, Cellulose nanocrystals reinforced poly (oxyethylene), Polymers 45 (2004), 4149.

[16] E. Fortunati, D. Puglia, M. Monti, L. Peponi, C. Santulli, J. M. Kenny and L. Torre, Extraction of cellulose nanocrystals from phormium tenax fibres, J. Polym. Environ. 21 (2013), 319.

[17] P. Lu and Y. L. Hsieh, Preparation and characterization of cellulose nanocrystals from rice straw, Carbohydr. Poly. 87 (2012), 564.

[18] N. Rehman, M. I. G. de Miranda, S. M. L. Rosa, D. M. Pimentel, S. M. B. Nachtigall and C. I. D. Bica, Cellulose and nanocellulose from maize mtraw: An insight on the crystal properties, J. Polym. Environ. 22 (2014), 252.

[19] J. Yang, C. R. Han, J. F. Duan, F. Xu and R. C. Sun, Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly (ethylene glycol) nanocomposite hydrogels, ACS Appl. Mater. Interfaces 5 (2013), 3199.

[20] H. Yuan, Y. Nishiyama, M. Wada and S. Kuga, Surface acylation of cellulose whiskers by drying aqueous emulsion, Biomacromolecules 7 (2006), 696.

[21] R. F. Nickerson and J. A. Habrle, Cellulose intercrystalline structure study by hydrolytic methods, Ind. Eng. Chem. 39 (1947), 1507.

[22] S. C. Espinosa, T. Kuhnt, E. J. Foster and C. Weder, Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis, Biomacromolecules 14 (2013), 1223.

[23] M. F. Rosa, E. S. Medeiros, J. A. Malmonge, K. S. Gregorski, D. F. Wood, L. H. C. Mattoso, G. Glenn, W. J. Orts and S. Imam, Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior, Carbohydr. Polym. 81 (2010), 83.

[24] H. Sadeghifar, I. Filpponen, S. P. Clarke, D. F. Brougham and D. S. Argyropoulos, Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface, J. Mater. Sci. 46 (2011), 7344.

[25] J. Araki, M. Wada, S. Kuga and T. Okano, Birefringent glassy phase of a cellulose microcrystal suspension, Langmuir. 16 (2000), 2413.

[26] R. Zuluaga, JL. Putaux, J. Cruz, J. Vélez, I. Mondragon and P. Ganan, Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features, Carbohydr. Polym. 76 (2009), 51.

[27] S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona and S. J. Rowan et al., Review: Current international research into cellulose nanofibres and nanocomposites, J. Mater. Sci. 45 (2010), 1.

[28] Y. Habibi, I. Hoeger, S. S. Kelley and O. J. Rojas, Development of Langmuir-Schaeffer cellulose nanocrystal monolayers and their interfacial behaviors, Langmuir. 26 (2010), 990.

[29] L. Segal, J. J. Creely, A. E. Martin and C. M. Conrad, The empirical method for estimating the degree of cristallinity of native cellulose using the X-ray diffractometer, Tex. Res. J. 29 (1959), 786.

[30] R. M. Dos Santos, W. P. F. Neto, H. A. Silvério, D. F. Martins, N. O. Dantas and D. Pasquini, Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste, Ind. Crop. Prod. 50 (2013), 707.

[31] B. Deepa, E. Abraham, B. M. Cherian, A. Bismarck, J. J. Blaker and L. A. Pothan, Structure, morphology and thermal characteristics of banana nanofibers obtained by steam explosion, Bioresour. Technol. 102 (2011), 1988.

[32] J. P. S. Morais, M. D. F. Rosa, M. D. M. D. S. Filho, L. D. Nascimento, D. M. D. Nascimento and A. R. Cassales, Extraction and characterization of nanocellulose structures from raw cotton linter, Carbohydr. Polym. 91 (2013), 229.

[33] W. P. F. Flauzino-Neto, H. A. Silvério, N. O. Dantas and D. Pasquini, Extraction and characterization of cellulose nanocrystals from agro-industrial residue-Soy hulls, Ind. Crop. Prod. 42 (2013), 480.

[34] A. Barakat, C. Gaillard, J. P. Steyer and H. Carrere, Anaerobic biodegradation of cellulose xylan-lignin nanocomposites as model assemblies of lignocellulosic biomass, Waste Biomass Valor. 5 (2014), 293.

[35] P. Lu and YL. Hsieh, Preparation and properties of cellulose nanocrystals: Rods, spheres, and network, Carbohydr. Polym. 5 (2010), 329.

[36] F. Jiang, A. R. Esker and M. Roman, Acid-catalyzed and solvolytic desulfation of cellulose nanocrystals, Langmuir. 26 (2010), 17919.

[37] C. F. Liu, J. L. Ren, F. Xu, J. J. Liu, J. X. Sun and R. C. Sun, Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse, J. Agri. Food Chem. 54 (2006), 5742.

[38] Y. H. P. Zhang and L. R. Lynd, Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Non complexed cellulase systems, Biotechnol. Bioeng. 88 (2004), 797.

[39] S. Borysiak and J. Garbarczyk, Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerization, Fibers Text East Eur. 11 (2003), 104.

[40] H. A. Silvério, W. P. Flauzino-Neto, N. O. Dantas and D. Pasquini, Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites, Ind. Crop. Prod. 44 (2013), 427.

[41] A. M. A. Nada, M. Y. El-Kady, E. S. A. El-Sayed and F. M. Amine, Preparation and characterization of microcrystalline cellulose (MCC), Bioresources 4 (2009), 1359.

[42] M. Hajaligol, B. Waymack and D. Kellogg, Low temperature formation of aromatic hydrocarbon from pyrolysis of cellulosic materials, Fuel 80 (2001), 1799.

[43] H. L. Lee, G. C. Chen and R. M. Rowell, Thermal properties of wood reacted with a phosphorus pentoxide-amine system, J. Appl. Polym. Sci. 91 (2004), 2465.

[44] N. Johar, I. Ahmad and A. Dufresne, Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk, Ind. Crop. Prod. 37 (2012), 93.

[45] W. H. Chen, Y. J. Tu and H. K. Sheen, Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating, Appl. Energ. 88 (2011), 2726.

[46] A. Sonia and K. P. Dasan, Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa, Carbohydr Polym. 92 (2013), 668.

[47] N. Wang, E. Ding and R. Cheng, Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups, Polymer 48 (2007), 3486.

[48] S. Elazzouzi-Hafraoui, Y. Nishiyama, L. Heux, F. Dubreuil and C. Rochas, The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose, Biomacromolecules 9 (2008), 57.

[49] M. A. S. Azizi-Samir, F. Alloin and A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules 6 (2005), 612.

[50] J. Araki, M. Wada, S. Kuga and T. Okano, Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloids Surf. A Physicochem. Eng. Asp. 142 (1998), 75.

[51] X. Dong, J. F. Revol and D. Gray, Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose, Cellulose 5 (1998), 19.