[1] C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon and M.
Poliakoff, Valorization of biomass: Deriving more value from waste,
Science 337 (2012), 695.
[2] E. A. MartÃnez, S. S. Silva, J. B. A. Silva, A. I. N. Solenzal
and M. G. A. Felipe, The influence of pH and dilution rate on
continuous production of xylitol from sugarcane bagasse hemicellulosic
hydrolysate by C. Guilliermondii, Process Biochem. 38 (2003), 1677.
[3] J. M. Hernández-Salas, M. S. Villa-RamÃrez, J. S.
Veloz-Rendón, K. N. Rivera-Hernández, R. A. González-César
and M. A. Plascencia-Espinosa, Comparative hydrolysis and fermentation
of sugarcane and agave bagasse, Bioresour. Technol. 100 (2009),
1238.
[4] A. K. Chandel, R. K. Kapoor, A. Singh and R. C. Kuhad,
Detoxification of sugarcane bagasse hydrolysate improves ethanol
production by candida shehatae NCIM 3501, Bioresour. Technol. 98
(2007), 1947.
[5] K. K. Cheng, B. Y. Cai, J. A. Zhang, H. Z. Ling, Y. J. Zhou, J. P.
Ge and J. M. Xu, Sugarcane bagasse hemicellulose hydrolysate for
ethanol production by acid recovery process, Biochem. Eng. J. 38
(2008), 105.
[6] D. Restuti and A. Michaelowa, The economic potential of bagasse
cogeneration as CDM projects in Indonesia, Energ. Policy 35 (2007),
3952.
[7] J. A. Quintero, M. I. Montoya, O. J. Sánchez, O. H. Giraldo and
C. A. Cardona, Fuel ethanol production from sugarcane and corn:
Comparative analysis for a Colombian case, Energy 33 (2008), 385.
[8] X. F. Sun, F. Xu, R. C. Sun, P. Fowler and M. S. Baird,
Characteristics of degraded cellulose obtained from steam-exploded
wheat straw, Carbohydr. Res. 340 (2005), 97.
[9] A. Moubarik and N. Grimi Boussetta, Structural and thermal
characterization of Moroccan sugarcane bagasse cellulose fibers and
their applications as a reinforcing agent in low density polyethylene,
Compos. Part B Eng. 52 (2013), 233.
[10] J. Li, X. Wei, Q. Wang, J. Chen, G. Chang, L. Kong, J. Su and Y.
Liu, Homogeneous isolation of nanocellulose from sugarcane bagasse by
high pressure homogenization, Carbohydr. Polym. 90 (2012), 1609.
[11] E. D. M. Teixeira, T. J. Bondancia, K. B. R. Teodoro, A. C.
Corrêa, J. M. Marconcini and L. H. C. Mattoso, Sugarcane
bagasse whiskers: Extraction and characterizations, Ind. Crop. Prod.
33 (2011), 63.
[12] R. G. P. Viera, G. R. Filho, R. M. N. D. Assunção, C. D. S.
Meireles, J. G. Vieira and G. S. D. Oliveira, Synthesis and
characterization of methylcellulose from sugarcane bagasse cellulose,
Carbohydr. Polym. 67 (2007), 182.
[13] A. Mandal and D. Chakrabarty, Isolation of nanocellulose from
waste sugarcane bagasse (SCB) and its characterization, Carbohydr.
Polym. 86 (2011), 1291.
[14] J. Bras, M. L. Hassan, C. Bruzesse, E. A. Hassan, N. A. El Wakil
and A. Dufresne, Mechanical, barrier, and biodegradability properties
of bagasse cellulose whiskers reinforced natural rubber
nanocomposites, Ind. Crop. Prod. 32 (2010), 627.
[15] M. A. S. Azizi-Samir, F. Alloin, J. Y. Sanchez and A. Dufresne,
Cellulose nanocrystals reinforced poly (oxyethylene), Polymers 45
(2004), 4149.
[16] E. Fortunati, D. Puglia, M. Monti, L. Peponi, C. Santulli, J. M.
Kenny and L. Torre, Extraction of cellulose nanocrystals from phormium
tenax fibres, J. Polym. Environ. 21 (2013), 319.
[17] P. Lu and Y. L. Hsieh, Preparation and characterization of
cellulose nanocrystals from rice straw, Carbohydr. Poly. 87 (2012),
564.
[18] N. Rehman, M. I. G. de Miranda, S. M. L. Rosa, D. M. Pimentel, S.
M. B. Nachtigall and C. I. D. Bica, Cellulose and nanocellulose from
maize mtraw: An insight on the crystal properties, J. Polym. Environ.
22 (2014), 252.
[19] J. Yang, C. R. Han, J. F. Duan, F. Xu and R. C. Sun, Mechanical
and viscoelastic properties of cellulose nanocrystals reinforced poly
(ethylene glycol) nanocomposite hydrogels, ACS Appl. Mater. Interfaces
5 (2013), 3199.
[20] H. Yuan, Y. Nishiyama, M. Wada and S. Kuga, Surface acylation of
cellulose whiskers by drying aqueous emulsion, Biomacromolecules 7
(2006), 696.
[21] R. F. Nickerson and J. A. Habrle, Cellulose intercrystalline
structure study by hydrolytic methods, Ind. Eng. Chem. 39 (1947),
1507.
[22] S. C. Espinosa, T. Kuhnt, E. J. Foster and C. Weder, Isolation of
thermally stable cellulose nanocrystals by phosphoric acid hydrolysis,
Biomacromolecules 14 (2013), 1223.
[23] M. F. Rosa, E. S. Medeiros, J. A. Malmonge, K. S. Gregorski, D.
F. Wood, L. H. C. Mattoso, G. Glenn, W. J. Orts and S. Imam, Cellulose
nanowhiskers from coconut husk fibers: Effect of preparation
conditions on their thermal and morphological behavior, Carbohydr.
Polym. 81 (2010), 83.
[24] H. Sadeghifar, I. Filpponen, S. P. Clarke, D. F. Brougham and D.
S. Argyropoulos, Production of cellulose nanocrystals using
hydrobromic acid and click reactions on their surface, J. Mater. Sci.
46 (2011), 7344.
[25] J. Araki, M. Wada, S. Kuga and T. Okano, Birefringent glassy
phase of a cellulose microcrystal suspension, Langmuir. 16 (2000),
2413.
[26] R. Zuluaga, JL. Putaux, J. Cruz, J. Vélez, I. Mondragon and P.
Ganan, Cellulose microfibrils from banana rachis: Effect of alkaline
treatments on structural and morphological features, Carbohydr. Polym.
76 (2009), 51.
[27] S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R.
Capadona and S. J. Rowan et al., Review: Current international
research into cellulose nanofibres and nanocomposites, J. Mater. Sci.
45 (2010), 1.
[28] Y. Habibi, I. Hoeger, S. S. Kelley and O. J. Rojas, Development
of Langmuir-Schaeffer cellulose nanocrystal monolayers and their
interfacial behaviors, Langmuir. 26 (2010), 990.
[29] L. Segal, J. J. Creely, A. E. Martin and C. M. Conrad, The
empirical method for estimating the degree of cristallinity of native
cellulose using the X-ray diffractometer, Tex. Res. J. 29 (1959),
786.
[30] R. M. Dos Santos, W. P. F. Neto, H. A. Silvério, D. F.
Martins, N. O. Dantas and D. Pasquini, Cellulose nanocrystals
from pineapple leaf, a new approach for the reuse of this agro-waste,
Ind. Crop. Prod. 50 (2013), 707.
[31] B. Deepa, E. Abraham, B. M. Cherian, A. Bismarck, J. J. Blaker
and L. A. Pothan, Structure, morphology and thermal characteristics of
banana nanofibers obtained by steam explosion, Bioresour. Technol. 102
(2011), 1988.
[32] J. P. S. Morais, M. D. F. Rosa, M. D. M. D. S. Filho, L. D.
Nascimento, D. M. D. Nascimento and A. R. Cassales, Extraction and
characterization of nanocellulose structures from raw cotton linter,
Carbohydr. Polym. 91 (2013), 229.
[33] W. P. F. Flauzino-Neto, H. A. Silvério, N. O. Dantas and D.
Pasquini, Extraction and characterization of cellulose nanocrystals
from agro-industrial residue-Soy hulls, Ind. Crop. Prod. 42 (2013),
480.
[34] A. Barakat, C. Gaillard, J. P. Steyer and H. Carrere, Anaerobic
biodegradation of cellulose xylan-lignin nanocomposites as model
assemblies of lignocellulosic biomass, Waste Biomass Valor. 5 (2014),
293.
[35] P. Lu and YL. Hsieh, Preparation and properties of cellulose
nanocrystals: Rods, spheres, and network, Carbohydr. Polym. 5 (2010),
329.
[36] F. Jiang, A. R. Esker and M. Roman, Acid-catalyzed and solvolytic
desulfation of
cellulose nanocrystals, Langmuir. 26
(2010), 17919.
[37] C. F. Liu, J. L. Ren, F. Xu, J. J. Liu, J. X. Sun and R. C. Sun,
Isolation and characterization of cellulose obtained from ultrasonic
irradiated sugarcane bagasse, J. Agri. Food Chem. 54 (2006), 5742.
[38] Y. H. P. Zhang and L. R. Lynd, Toward an aggregated understanding
of enzymatic hydrolysis of cellulose: Non complexed cellulase systems,
Biotechnol. Bioeng. 88 (2004), 797.
[39] S. Borysiak and J. Garbarczyk, Applying the WAXS method to
estimate the supermolecular structure of cellulose fibres after
mercerization, Fibers Text East Eur. 11 (2003), 104.
[40] H. A. Silvério, W. P. Flauzino-Neto, N. O. Dantas and D.
Pasquini, Extraction and characterization of cellulose nanocrystals
from corncob for application as reinforcing agent in nanocomposites,
Ind. Crop. Prod. 44 (2013), 427.
[41] A. M. A. Nada, M. Y. El-Kady, E. S. A. El-Sayed and F. M. Amine,
Preparation and characterization of microcrystalline cellulose (MCC),
Bioresources 4 (2009), 1359.
[42] M. Hajaligol, B. Waymack and D. Kellogg, Low temperature
formation of aromatic hydrocarbon from pyrolysis of cellulosic
materials, Fuel 80 (2001), 1799.
[43] H. L. Lee, G. C. Chen and R. M. Rowell, Thermal properties of
wood reacted with a phosphorus pentoxide-amine system, J. Appl. Polym.
Sci. 91 (2004), 2465.
[44] N. Johar, I. Ahmad and A. Dufresne, Extraction, preparation and
characterization of cellulose fibres and nanocrystals from rice husk,
Ind. Crop. Prod. 37 (2012), 93.
[45] W. H. Chen, Y. J. Tu and H. K. Sheen, Disruption of sugarcane
bagasse lignocellulosic structure by means of dilute sulfuric acid
pretreatment with microwave-assisted heating, Appl. Energ. 88 (2011),
2726.
[46] A. Sonia and K. P. Dasan, Chemical, morphology and thermal
evaluation of cellulose microfibers obtained from Hibiscus sabdariffa,
Carbohydr Polym. 92 (2013), 668.
[47] N. Wang, E. Ding and R. Cheng, Thermal degradation behaviors of
spherical cellulose nanocrystals with sulfate groups, Polymer 48
(2007), 3486.
[48] S. Elazzouzi-Hafraoui, Y. Nishiyama, L. Heux, F. Dubreuil and C.
Rochas, The shape and size distribution of crystalline nanoparticles
prepared by acid hydrolysis of native cellulose, Biomacromolecules 9
(2008), 57.
[49] M. A. S. Azizi-Samir, F. Alloin and A. Dufresne, Review of recent
research into cellulosic whiskers, their properties and their
application in nanocomposite field, Biomacromolecules 6 (2005),
612.
[50] J. Araki, M. Wada, S. Kuga and T. Okano, Flow properties of
microcrystalline cellulose suspension prepared by acid treatment of
native cellulose, Colloids Surf. A Physicochem. Eng. Asp. 142 (1998),
75.
[51] X. Dong, J. F. Revol and D. Gray, Effect of microcrystallite
preparation conditions on the formation of colloid crystals of
cellulose, Cellulose 5 (1998), 19.