Volume no :14, Issue no: 2, December (2015)

GENERALIZED DIAGONAL EXPONENT SYMMETRY MODEL AND ITS ORTHOGONAL DECOMPOSITION FOR SQUARE CONTINGENCY TABLES WITH ORDERED CATEGORIES

Author's: Kiyotaka Iki, Akira Shibuya and Sadao Tomizawa
Pages: [207] - [220]
Received Date: November 24, 2015
Submitted by:
DOI: http://dx.doi.org/10.18642/jsata_7100121584

Abstract

For square contingency tables with ordered categories, this article proposes a generalized diagonal exponent symmetry model which indicates that in addition to the structure of symmetry of the probabilities with respect to the main diagonal of the table, the log-ratio of adjacent two probabilities along subdiagonal of the table is the sum of polynomial of row value and polynomial of column value with same coefficients. Also, this article gives the decomposition of proposed model, and shows the orthogonality of the test statistics for decomposed model. An example is given.

Keywords

diagonal exponent symmetry, ordinal category, orthogonal decomposition, quasi-symmetry, square contingency table.