References

NUMERICAL SIMULATION OF SLOSHING PROBLEM IN RECTANGULAR TANK


[1] H. N. Abramson, Dynamic Behavior of Liquids in Moving Containers with Application to Space Vehicle Technology, NASA-SP-106, 1966.

[2] J. Gerrits, G. E. Loots, G. Fekken and A. E. P. Veldman, Liquid sloshing on earth and in space, in: Moving Boundaries V (B. Sarler, C. A. Brebbia and H. Power eds.), WIT Press, Southampton, (1999), pp. 111-120.

[3] C. W. Hirt and B. D. Nichols, Volume of fluid method for the dynamics of free boundaries, Journal of Computational Physics 39 (1981), 201-222.

[4] H. F. Bauer, C. D. Clark and J. H. Woodward, Analytical mechanical model for the description of the rotary propellant sloshing motion, Final Report, Contract NAS8-11159, Eng. Experiment Station, Georgia Tech., Atlanta, 1965.

[5] H. F. Bauer and J. Villenueva, Theory of liquid sloshing in a rectangular container with numerical examples for C-45A wing, Lockheed-Georgia Co., Rept. No ER 8390, 1966.

[6] O. M. Faltinsen, A non-linear theory of sloshing in rectangular tanks, J. of Ship Research 18(4) (1974), 224-241.

[7] O. M. Faltinsen, A numerical non-linear method of sloshing in tanks with two-dimensional flow, J. of Ship Research 22(3) (1978), 193-202.

[8] M. Arai, L. Y. Cheng and Y. Inoue, 3-D numerical simulation of impact load due to liquid cargo sloshing, Journal of the Society of Naval Architects of Japan 17(1) (1994).

[9] G. X. Wu, Q. W. Ma and R. E. Taylor, Numerical simulation of sloshing waves in a 3-D tank based on a finite element method, Applied Ocean Research 20 (1998).

[10] T. Nakayama and K. Washizu, Nonlinear analysis of liquid motion in a container subjected to forced pitching oscillation, Int. J. for Num. Meth. in Eng. 15 (1980), 1207-1220.

[11] J. N. Newmann, Linearized Wave Resistance Theory, International Seminar on Wave Resistance, Japan, 1976.

[12] H. C. Raven, Variation on a Theme by Dawson, Proceedings of the Seventeenth Symposium on Naval Hydrodynamics, The Hague.

[13] C. W. Dawson, A Practical Computer Method for Solving Ship-Wave Problems, 2nd International Conference on Numerical Ship Hydrodynamics, Berkeley, USA, 1977.

[14] J. L. Hess, Calculation of Potential Flow About Arbitrary Three-Dimensional Lifting Bodies, Douglas Report No. MDC J5679-01.

[15] Harlow and Welch, Numerical calculation of time dependent viscous incompressible flows of liquid with free surface, Phys. Fluids 8, 21-28.

[16] V. Armenio, An improved MAC method (SIMAC) for unsteady high-Reynolds free surface flows, Int. J. Numer. Methods Fluids 24 (1997), 185-214.

[17] D. Enright, R. Fedkiw and J. Mitchell, A hybrid particle level set method for improved interface capturing, J. Comput. Phys. 183 (2002), 83-116.

[18] Sebastien Tanguy and Alain Berlemon, Application of a level set method for simulation of droplet collisions, International Journal of Multiphase Flow 31 (2005), 1015-14035.

[19] Samuel Kokh, Gregoire Allaire and Sebastien Clerc, Towards Boiling Crisis Simulation: The Level-Set Method, Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Oct. 3-8, 1999.

[20] S. Osher and R. P. Fedkiw, Level set methods: An overview and some recent results, J. Comput. Phys. 169 (2001), 463-502.

[21] M. Sussman, P. Smereka and S. Osher, Level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114 (1994), 146-159.

[22] M. Sussman and E. G. Puckett, A coupled level set and volume-of fluid method for computing 3-D and axisymmetric incompressible two-phase flows, Journ. of Comput. Physical 162 (2000), 301-337.

[23] J. E. Pilliod Jr. and E. G. Puckett, Second order accurate volume-of-fluid algorithm for tracking material interfaces, J. Comp. Phys. 130 (1997), 269-682.

[24] K. Abe and K. Koro, A topology optimization approach using VOF method, Struct. Multidisc. Optim. 31 (2006), 470-479; DOI.10.1007/s00158-005-0582-5.

[25] D. Gueyffier, A. Nadim, J. Li, R. Scardovelli and S. Zaleski, Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys. 152 (1999), 423-456.

[26] W. F. Noh and P. Woodward, SLIC (Simple Line Interface Calculation), Lecture Notes Physics, Springer, New York, 59 (1976), 330-340.

[27] Murray Rudman, Volume-tracking methods for interfacial flow calculations, International Journal for Numerical Methods in Fluids 24 (1997), 671-691.

[28] J. Longo, H. P. Huang and F. Stern, Solid-free surface juncture boundary layer and wake, Experiments in Fluids 25(4) (1998), 283-297.

[29] D. B. Kothe, W. J. Mosso and J. S. Brock, Volume tracking of interfaces having surface tension in two and three dimensions, AIAA 96, No. 0859.

[30] D. B. Kothe, M. W. Williams, K. L. Lam, D. R. Kozekwa, P. K. Tubesing and E. G. Puckett, A second-order accurate, linearity-preserving volume tracking algorithm for free surface flows on 3-D unstructured meshes, Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference, San Francisco, California, USA, July 18-22, 1999.

[31] D. Gueyffier, A. Nadim, J. Li, R. Scardovelli and S. Zaleski, Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys. 152 (1999), 423-456.

[32] D. B. Kothe and W. J. Rider, Reconstructing volume tracking, Journal of Comput. Phys. 141 (1998), 112-152. U.S. Department of Energy by Los Alamos National Laboratory.

[33] J. Brackbill, D. Kothe and C. Zemach, A continuum method for modelling surface tension, J. Comp. Phys. 100 (1992), 335-354.

[34] T. Hayase, J. A. C. Humphrey and R. Greif, A consistently formulated QUICK scheme for fast and stable convergence using finite volume iterative calculation procedures, J. Comput. Phys. 98(1) (1992), 108-118.

[35] S. Majumdar, Role of underrelaxation in momentum interpolation for calculation of flow with non-staggered grids, Numerical Heat Transfer 13 (1998), 125-132.

[36] Stanley Osher and Sukumar Chakravarthy, Very High Accurate TVD Schemes, Institute for Computer Applications in Sciences and Engineering NASA Langley Research Center, Hampton, Virginia 23665, Report No. 84-44.

[37] S. R. Chakravarthy and S. Osher, High resolution application of the Osher upwind scheme for the Euler equation, AIAA Paper 83-1943.

[38] C. S. Peskin, Numerical analysis of blood flow in the heart, J. Computational Phys. 25 (1977), 220-252.

[39] D. B. Kothe, W. J. Mosso and J. S. Brock, Volume tracking of interfaces having surface tension in two and three dimensions, AIAA 96, No. 0859.

[40] D. J. E. Harvie and D. F. Fletcher, A new volume of fluid advection algorithm: The stream scheme, Journal of Computational Physics 162 (2000), 1-32.

[41] Gihun Son, Efficient implementation of a coupled level-set and volume-of-fluid method for three-dimensional incompressible two-phase flows, Numerical Heat Transfer, Part B 43 (2003), 549-565.

[42] D. Gueyffier, A. Nadim, J. Li, R. Scardovelli and S. Zaleski, Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys. 152 (1999), 423-456.

[43] J. E. Pilliod Jr. and E. G. Puckett, Second order accurate volume-of-fluid algorithm for tracking material interfaces, Technical Report, Lawrence Berkeley National Laboratory, 1997. No. LBNL-40744, Also Submitted to J. Computational Physics.

[44] Jeroen Gerrits and Arthur E. P. Veldam, Numerical simulation of coupled liquid- solid dynamics, Proceeding of European Congress on Computational Methods in Applied Sciences and Engineering, 2000.

[45] N. Coulibaly, H. Andre and J. J. Marchal, Coupling of implicit-explicit methods for two-phase flow with a fully volume preserving method, International Conference on Marine Research and Transportation, 2007.

[46] N. Coulibaly and A. Nguessan, Numerical simulation of the droplet impact on a surface using volume-of-fluid (VOF) method, Far East Journal of Applied Mathematics 39(1) (2010), 23-36.

[47] G. C. Feng, Dynamic loads due to moving liquid, AIAA Paper No. 73-409 (1973).

[48] O. M. Faltinsen, A numerical nonlinear method of sloshing in tanks with two-dimensional flow, J. of Ship Research 22(3) (1978), 193-202.

[49] D. Y. Lee and H. S. Choi, Study on sloshing in cargo tanks including hydro elastic effects, J. of Mar. Sci. Technology 4(1) (1999).