References

A MODEL BASED ON CELLULAR AUTOMATA TO SIMULATE A SIS EPIDEMIC DISEASE


[1] E. Ahmed and A. S. Elgazzar, On some applications of cellular automata, Physica A 296 (2001), 529.

[2] C. Beauchemin, J. Samuel and J. Tuszynski, A simple cellular automaton models for influenza: A viral infections, J. Theor. Biol. 232 (2005), 223.

[3] N. Boccara and K. Cheong, Critical behaviour of a probablistic automata network SIS model for the spread of an infectious disease in a population of moving individuals, J. Phys. A-Math. Gen. 26 (1993), 3707.

[4] M. A. Fuentes and M. N. Kuperman, Cellular automata and epidemiological models with spatial dependence, Physica A 267 (1999), 471.

[5] W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, part I, Proc. Roy. Soc. Edin. A 115 (1927), 700.

[6] M. L. Martins et al., A cellular automata model for citrus variegated chlorosis, Physica A 295 (2001), 42.

[7] D. Molisson, The dependence of epidemic and population velocities on basic parameters, Math. Biosci. 107 (1991), 255.

[8] R. Ross, The Prevention of Malaria, 2nd Edition, Murray, London, 1911.

[9] J. Satsuma et al., Extending the SIR epidemic model, Physica A 336 (2004), 369.

[10] G. Ch. Sirakoulis, I. Karafyllidis and A. Thanailakis, A cellular automaton model for the effects of population movement and vaccination on epidemic propagation, Ecol. Model. 133 (2000), 209.

[11] T. Toffoli and N. Margolus, Cellular Automata Machines: A New Environment for Modelling, The MIT Press, 1987.

[12] S. Hoya White, A. Martín del Rey and G. Rodríguez Sánchez, A model based on cellular automata to simulate epidemic diseases, Proc. ACRI 2006, Lecture Notes in Computer Science 4173 (2006), 304.

[13] W. Wolfram, A New Kind of Science, Wolfram Media Inc., 2002.