References

TWO-DIMENSIONAL FINITE LARMOR RADIUS APPROXIMATION IN CANONICAL GYROKINETIC COORDINATES


[1] R. Adams and J. Fournier, Sobolev Spaces, Academic Press, (1975-2nd ed. in 2003).

[2] P. Ailliot, E. Frénod and V. Monbet, Long term object drift in the ocean with tide and wind, Multiscale Model. Simul. 5(2) (2006), 514-531.

[3] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal. 23(6) (1992), 1482-1518.

[4] N. Besse and E. Sonnendrücker, Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space, J. Comp. Phys. 191 (2003), 341-376.

[5] M. Bostan, The Vlasov-Poisson system with strong external magnetic field, finite Larmor radius regime, Asymptot. Anal. 61(2) (2007), 91-123.

[6] A. Brizard, Nonlinear Gyrokinetic Tokamak Physics, PhD thesis of Princeton University, 1990.

[7] A. Brizard and T.-S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys. 79 (2007), 421-468.

[8] D.-H. Dubin, J.-A. Krommes, C. Oberman and W.-W. Lee, Nonlinear gyrokinetic equations, Phys. Fluids 26(12) (1983), 3524-3535.

[9] E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field, Asymptot. Anal. 18(3-4) (1998), 193-214.

[10] E. Frénod and E. Sonnendrücker, Long time behavior of the Vlasov equation with a strong external magnetic field, Math. Models Methods Appl. Sci. 10(4) (2000), 539-553.

[11] E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal. 32(6) (2001), 1227-1247.

[12] E. Frénod, P.-A. Raviart and E. Sonnendrücker, Two-scale expansion of a singularly perturbed convection equation, J. Math. Pures Appl. 80(8) (2001), 815-843.

[13] E. Frénod, A. Mouton and E. Sonnendrücker, Two-scale numerical simulation of the weakly compressible 1D isentropic Euler equations, Numer. Math. 108(2) (2007), 263-293.

[14] E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method, Math. Models Methods Appl. Sci. 19(2) (2009), 175-197.

[15] F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl. 78 (1999), 791-817.

[16] F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field in quasineutral regime, Math. Models Methods Appl. Sci. 13(5) (2003), 661-714.

[17] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation, J. Comp. Phys. 217 (2006), 395-423.

[18] D. Han-Kwan, The three-dimensional finite Larmor radius approximation, Asymptot. Anal. 66(1) (2010), 9-33.

[19] W.-W. Lee, Gyrokinetic approach in particle simulation, Phys. Fluids 26(2) (1983), 555-562.

[20] W.-W. Lee, Gyrokinetic particle simulation model, J. Comp. Phys. 72(1) (1987), 243-269.

[21] J.-L. Lions, Quelques Méthodes de Résolution de Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, 1969.

[22] R.-G. Littlejohn, A guiding center Hamiltonian: A new approach, J. Math. Phys. 20(12) (1979), 2445-2458.

[23] A. Mouton, Approximation multi-échelles de l’équation de Vlasov, thèse de l’Université de Strasbourg, Éd. Universitaires Européennes, TEL-00411964 (2009).

[24] A. Mouton, Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel, Kinet. Relat. Models 2(2) (2009), 251-274.

[25] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20(3) (1989), 608-623.