References

A PARTIAL PROOF OF THE ERDŐS-SZEKERES CONJECTURE FOR HEXAGONS


[1] T. Bisztriczky and G. Fejes Tóth, Nine convex sets determine a pentagon with convex sets as vertices, Geom. Dedicata 31(1) (1989), 89-104.

[2] W. E. Bonnice, On convex polygons determined by a finite planar set, Amer. Math. Monthly 81 (1974), 749-752.

[3] P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005.

[4] K. Dehnhardt, Konvexe Sechsecke in ebenen Puntkmengen (in German), Diplomarbeit, Technische Universität Braunschweig, Braunschweig, Germany, 1981.

[5] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470.

[6] P. Erdős and G. Szekeres, On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 3-4 (1960-61), 53-62.

[7] J. D. Kalbfleisch, J. G. Kalbfleisch and R. G. Stanton, A combinatorial problem on convex n-gons, Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La) (1970), 180-188.

[8] W. Morris and V. Soltan, The Erdős-Szekeres problem on points in convex position a survey, Bull. Amer. Math. Soc. (N.S.) 37(4) (2000), 437-458.

[9] L. Peters and G. Szekeres, Computer solution to the 17-point Erdős-Szekeres problem, ANZIAM Journal 48 (2006), 151-164.

[10] G. Tóth and P. Valtr, The Erdős Szekeres theorem: upper bounds and related results, Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 52 (2005), 557-568.